

# BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

## Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

Course Title: Principles of GeneticsCourse Code: BM24C4

## Unit-III Introduction to Clinical Genetics

Dr. K. PREMKUMAR Professor Department of Biomedical Science

## **Introduction to Clinical Genetics**

(Study and application of genetics to diagnose, manage, and prevent genetic disorders)

**Prof. K. Premkumar** Dept of Biomedical Science Bharathidasan University

## **Congenital Abnormalities and Dysmorphic Syndromes**

- Congenital Abnormalities: Structural or functional defects present at birth.
- **Dysmorphic Syndromes**: Disorders characterized by abnormal physical development.

#### > Congenital Abnormalities:

- 1. Neural tube defects (e.g., spina bifida).
- 2. Cleft lip and palate.
- 3. Congenital heart defects (e.g., tetralogy of Fallot).

**Causes**: Genetic mutations, chromosomal abnormalities, environmental factors (e.g., maternal infections, drugs).

#### Dysmorphic Syndromes:

1. Down Syndrome:

Trisomy 21, characterized by flat facial features, developmental delay.

2. Turner Syndrome:

Monosomy X, features include short stature and infertility.

• **Diagnosis**: Clinical examination, karyotyping, genetic tests.

## **Genetic Counselling**

A process to evaluate and understand a family's risk of inherited disorders

#### **1. Steps in Genetic Counseling:**

- Family history analysis (pedigree).
- Risk assessment for genetic conditions.
- Discussion of options: testing, management, and reproduction choices.

#### 2. Importance:

- Helps individuals make informed decisions.
- Offers emotional support.

#### 3. Examples:

- Counseling parents with a child diagnosed with cystic fibrosis to assess risks for future pregnancies.
- Advising a family with a history of BRCA1 mutations on breast and ovarian cancer risk.

## **Chromosomal Breakage Syndromes**

Disorders caused by increased susceptibility of chromosomes to breakage and rearrangement

#### 1. Examples:

#### **Fanconi Anemia**:

Features: Bone marrow failure, increased cancer risk, congenital malformations.Cause: Mutations in genes involved in DNA repair

#### **Bloom Syndrome**:

Features: Short stature, photosensitivity, increased risk of cancer.Cause: Mutations in the BLM gene.

#### Ataxia-Telangiectasia:

Features: Neurological dysfunction, immunodeficiency, and cancer risk.Cause: ATM gene mutations.

#### 2. Diagnosis: Cytogenetic studies, DNA damage assays.

**3. Management: Supportive care, hematopoietic stem cell transplantation** (e.g., for Fanconi anemia).

## **Single Gene Disorders**

(Disorders caused by mutations in a single gene)

Inheritance Patterns: Autosomal dominant, autosomal recessive, X-linked.

#### Huntington Disease

- *Cause* : Trinucleotide (CAG) repeat expansion in the HTT gene.
- *Symptoms* : Progressive neurodegeneration, movement disorders, psychiatric symptoms.
- Inheritance : Autosomal dominant.
- *Diagnosis* : Genetic testing for CAG repeats.

#### Neurofibromatosis

Diagnosis

| Types                | :   | NF1 and NF2.                                                                                                   |
|----------------------|-----|----------------------------------------------------------------------------------------------------------------|
| Cause                | :   | Mutations in the NF1 or NF2 genes.                                                                             |
| Symptoms             | :   | Café-au-lait spots, neurofibromas, learning disabilities (NF1); hearing loss and vestibular schwannomas (NF2). |
| Inheritance          | :   | Autosomal dominant.                                                                                            |
| Example              | •   | NF1 occurs in 1 in 3,000 individuals.                                                                          |
| <b>Cystic Fibros</b> | sis |                                                                                                                |
| Cause                | :   | Mutations in the CFTR gene.                                                                                    |
| Symptoms             | :   | Thick mucus production, respiratory infections, pancreatic insufficiency.                                      |
| Inheritance          | :   | Autosomal recessive.                                                                                           |

: Sweat chloride test, CFTR gene mutation analysis.

## Single Gene Disorders . . .

(Organized structures of DNA, carrying genetic information)

#### Cardiomyopathies

*Types* : Hypertrophic, dilated, restrictive. *Cause* : Mutations in genes encoding sarcomeric proteins (e.g., MYH7). *Symptoms* : Heart failure, arrhythmias. *Inheritance* : Often autosomal dominant. *Example* : Hypertrophic cardiomyopathy affects 1 in 500 individuals.

#### Duchenne Muscular Dystrophy (DMD)

- *Cause* : Mutations in the DMD gene leading to dystrophin deficiency.
- Symptoms : Progressive muscle weakness, delayed motor milestones, cardiac complications.
- Inheritance: X-linked recessive (mostly affects males).
- Diagnosis : Elevated creatine kinase levels, genetic testing.

#### > Hemophilia

- *Types* : Hemophilia A (Factor VIII deficiency), Hemophilia B (Factor IX deficiency).
- Symptoms : Excessive bleeding, joint damage due to hemorrhage.
- Inheritance : X-linked recessive.
- *Treatment* : Clotting factor replacement therapy.

## **Genetic Instability**

Tendency of the genome to acquire mutations due to defects in DNA repair mechanisms

#### **1.** Causes of Genetic Instability:

Errors during DNA replication.Exposure to mutagens (radiation, chemicals).Defective DNA repair pathways.

#### 2. Examples:

- Lynch Syndrome: Defects in mismatch repair genes leading to increased cancer risk.
- **Xeroderma Pigmentosum**: Inability to repair UV-induced DNA damage.
- 3. Impact:
  - Drives cancer development and progression.

