

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

Course Title: Principles of GeneticsCourse Code: BM24C4

Unit-IV

Screening of Diseases and Genetic Inheritance

Dr. K. PREMKUMAR Professor Department of Biomedical Science

Screening of Diseases and Genetic Inheritance

(Carrier Testing, Population Screening, Probability Theory, and Risk Calculations)

Prof. K. Premkumar Dept of Biomedical Science Bharathidasan University

Introduction

Objective:

To understand the principles and applications of disease screening. To explore genetic inheritance models and risk prediction tools.

Importance:

Early identification of genetic risks.

Informing clinical decisions and family planning.

Screening of Diseases

Systematic identification of individuals at risk of genetic diseases or carriers of genetic conditions.

Carrier Testing

Identifies individuals who carry a mutation for a recessive genetic disorder.

Examples:

Cystic Fibrosis: Testing for mutations in the CFTR gene.

Sickle Cell Anemia: Screening for carriers of the sickle-cell allele in high-risk populations.

Who Benefits:

Couples planning a family.

Individuals with a family history of genetic disorders.

Population Screening

Detects diseases or carriers in the general population to reduce disease burden.

Examples:

Newborn Screening: Phenylketonuria (PKU), hypothyroidism.Tay-Sachs Carrier Screening: Ashkenazi Jewish population.

Benefits:

Early diagnosis and treatment.

Prevention of genetic disorders in at-risk populations.

Genetic Registers

Databases to record information about individuals and families with genetic conditions.

Purpose:

Helps track inheritance patterns.

Facilitates targeted genetic counseling and research.

Example:

Register for individuals with BRCA1/2 mutations to monitor cancer risk.

Probability Theory in Genetics

Study of how likely an event is to occur, applied to predict inheritance of genetic traits

Importance:

Guides genetic counseling. Estimates risks for specific genetic conditions.

• Probability:

Likelihood of a specific outcome (e.g., 50% chance of inheriting an allele).

• Punnett Squares:

Used to visualize probabilities of inheritance patterns.

Example:

A heterozygous parent (Aa) crossed with another heterozygous parent (Aa) has a 25% chance of producing a homozygous recessive (aa) offspring.

Applications in Carrier Testing:

If both parents are carriers of a recessive condition, there is a 25% chance their child will have the condition.

Autosomal Dominant and Recessive Inheritance

Autosomal Dominant Inheritance

A single copy of the dominant allele is sufficient to express the trait.

Characteristics:

- Vertical pattern in pedigrees.
- Affected individuals have at least one affected parent.

Examples:

- Huntington's Disease.
- Marfan Syndrome.

Probability:

Affected parent (Aa) \times unaffected parent (aa) \rightarrow 50% chance of an affected child.

Autosomal Recessive Inheritance

Both copies of the gene must be mutated for the condition to manifest.

Characteristics:

- Horizontal pattern in pedigrees.
- Affected individuals often have unaffected carrier parents.

Examples:

- Sickle Cell Anemia.
- Cystic Fibrosis.

Probability:

Carrier parent (Aa) \times carrier parent (Aa) \rightarrow 25% chance of an affected child.

Bayes' Theorem in Genetic Counselling

A mathematical formula used to update the probability of an event based on new information.

$$\mathsf{P}(\mathsf{A}|\mathsf{B}) = \frac{\mathsf{P}(\mathsf{B}|\mathsf{A}) \; \mathsf{P}(\mathsf{A})}{\mathsf{P}(\mathsf{B})}$$

Application in Genetics:

• Revises risk estimates based on additional data (e.g., test results).

Example:

Initial Risk: 1/4 (based on family history).

After a negative genetic test: Use Bayes' theorem to adjust the risk downward.

Clinical Use:

- Estimating carrier probabilities.
- Reassessing risk after multiple tests (e.g., negative ultrasound findings).

Empiric Risks

Risk estimates based on observed data, not theoretical models.

Importance:

Used when genetic mechanisms are unclear or complex (e.g., multifactorial disorders).

- **Examples of Empiric Risks:**
 - Recurrence risk for neural tube defects: ~2-3% if one affected child;
 ~10% if two affected children.
 - Recurrence risk for cleft lip and palate: ~4% if one parent is affected

➢. Factors Influencing Empiric Risks:

- Family history (number of affected relatives).
- Severity of the disorder.
- Environmental influences

Case Study: Genetic Risk Assessment

Scenario:

A couple comes for genetic counseling. The woman is a carrier for cystic fibrosis (CFTR gene mutation), and her partner's genetic status is unknown.

Steps:

1.Carrier Probability for Partner:

•In the general population, carrier frequency for CF is $\sim 1/25$.

2. Risk Calculation:

•Using probability theory:

• Carrier parent (Aa) \times carrier partner (Aa) = 25% chance of an affected child. •Bayes' theorem can revise this probability after testing the partner.

Outcome:

- If the partner tests negative, the risk is greatly reduced.
- If positive, options like IVF with genetic testing can be discussed.

- Screening programs identify carriers and at-risk individuals for genetic diseases.
- Probability theory aids in predicting inheritance patterns.
- Autosomal dominant and recessive inheritance models explain common genetic risks.
- Bayes' theorem refines risk predictions with new evidence.
- Empiric risks guide decisions when genetic mechanisms are complex or multifactorial.

