

## BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024, Tamil Nadu, India Programme: M.Sc., Biomedical Science

Course Code: BM35C6 Course Title: Immunology

> Unit-III Antigens

Dr. R. POORNIMA Guest Faculty Department of Biomedical Science

#### Unit III:

Antigens – Factors influence immunogenicity, Epitopes, haptens – Effector molecules of innate system -Acute phase proteins, complements- classical & alternative pathways of complement system. Effector molecules of cell-mediated and humoral immune responses cytokines - Properties, receptors and antibodies / Immunoglobulins – Structure, antigenic determinants, immunoglobulin classes and functional significances.

# **PRESENTATION: 2**

# Effector molecules of cell-mediated immune responses

- 1. Cytokines- Ils, IFN-γ, TNF, GM-CSF
- 2. Cytotoxins- Perforin, Granzymes, Granulysin
- **3. Fas Ligand (FasL)**

# **Cell-mediated immunity** primarily involves **T cells** (**T lymphocytes**) and their effector molecules to combat intracellular pathogens (like viruses and some bacteria), tumor cells, and to mediate graft rejection.

#### **Effector Molecules in Cell-Mediated Immunity:**

#### 1.Cytokines:

- 1. Interleukins (ILs):
  - **1. IL-2:** Produced by activated T cells, promotes T cell proliferation (autocrine and paracrine growth factor).
  - **2. IL-12:** Promotes differentiation of CD4+ T cells into Th1 cells, which are crucial for activating macrophages and enhancing cell-mediated responses.
  - **3. IL-4 and IL-5:** Produced by Th2 cells, involved in promoting B cell differentiation and isotype switching, as well as in regulating allergic responses.

#### **2. Interferon-gamma (IFN-γ):**

1. A key cytokine produced by Th1 cells, CD8+ cytotoxic T cells, and NK cells. It activates macrophages, enhancing their ability to kill intracellular pathogens, and promotes the development of further Th1 responses.

#### **3. Tumor Necrosis Factor (TNF):**

1. Produced by activated T cells and macrophages, it promotes inflammation, apoptosis of infected cells, and helps to recruit other immune cells to the site of infection.

#### 4. Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF):

1. Stimulates the production of granulocytes and macrophages from hematopoietic progenitors, enhancing their numbers and function.

## 2. Cytotoxins:

### •Perforin:

•A protein released by cytotoxic **T lymphocytes** (CTLs or CD8+ T cells) and natural killer (**NK**) cells.

•It forms **pores** in the membrane of target cells, leading to cell lysis.

#### •Granzymes:

•Serine proteases released by CTLs and NK cells that enter target cells through perforin-formed pores

and **induce apoptosis** by cleaving intracellular proteins.

#### •Granulysin:

•Released by cytotoxic T cells and NK cells, it has antimicrobial and proapoptotic properties,

directly killing bacteria and inducing apoptosis in infected or cancerous cells.

## 3. Fas Ligand (FasL):

•Expressed on the surface of activated cytotoxic T cells.

•It binds to the Fas receptor on target cells, triggering apoptosis through the Fasmediated death pathway.

# Effector Molecules of Humoral Immune Responses

- 1. Antibodies (Immunoglobulins)- IgG, IgA, IgM, IgE and IgD
- 2. Cytokines
- 3. Complement Components

**Humoral immunity** involves **B cells** (B lymphocytes) and the production of antibodies to neutralize extracellular pathogens, such as bacteria, viruses, and toxins, and facilitate their clearance by other immune components.

# **Key Effector Molecules in Humoral Immunity:**

## **1.Antibodies (Immunoglobulins):**

•Produced by plasma cells (differentiated B cells), antibodies are the primary effector molecules in humoral immunity.

#### **They have several functions:**

### Neutralization:

Bind to pathogens or toxins, blocking their interaction with host cells. **Opsonization:** 

Coat pathogens to enhance phagocytosis by cells with Fc receptors (e.g., macrophages and neutrophils).

## **Complement Activation:**

Trigger the classical pathway of the complement system, leading to pathogen lysis and enhanced phagocytosis.

## **Antibody-Dependent Cellular Cytotoxicity (ADCC):**

Bind to infected cells or pathogens, allowing NK cells and other immune cells to recognize and kill them.

#### **Different classes of antibodies include:**

•**IgG:** Provides the majority of antibody-based immunity against pathogens and is the main antibody in circulation.

•IgA: Found in mucosal areas (e.g., gut, respiratory tract) and secretions like saliva and breast milk; important for mucosal immunity.

•IgM: The first antibody produced during an initial immune response; effective in complement activation and pathogen agglutination.

•IgE: Binds to allergens and triggers histamine release from mast cells and basophils; plays a key role in allergic responses and defense against parasites.

•IgD: Functions mainly as a receptor on B cells and has a role in B cell activation.

#### 2.Cytokines:

#### •Interleukins (ILs):

- •IL-4, IL-5, and IL-6: Promote B cell proliferation, differentiation, and classswitching to produce different antibody types (e.g., switching from IgM to IgG or IgE).
- •IL-10: Produced by regulatory T cells and B cells; helps in suppressing immune responses and maintaining tolerance to prevent overactive immune reactions.

#### •Transforming Growth Factor-beta (TGF-β):

•Involved in class-switching to IgA production and in the regulation of B cell responses.

#### **3.Complement Components:**

- •As part of the humoral immune response, antibodies (particularly IgM and IgG) activate the complement cascade, resulting in opsonization, lysis of pathogens, and inflammation.
- •C3b: A complement fragment that binds to the pathogen surface, marking it for phagocytosis.

#### **Summary**

•Cell-mediated immunity relies primarily on T cells and their effector molecules (cytokines, cytotoxins, and FasL) to eliminate infected or abnormal cells and activate other immune components.

•Humoral immunity depends on B cells and their production of antibodies,

which neutralize, opsonize, and activate the complement system to eliminate extracellular pathogens and toxins.

Both arms of the adaptive immune system collaborate to provide a comprehensive defense against a wide range of pathogens and maintain immune homeostasis.

# CYTOKINES

- **Cytokines** are small proteins that play crucial roles in **cell signaling**, particularly in immune responses.
- They are produced by a variety of cells, primarily immune cells like macrophages, lymphocytes, and dendritic cells, but also non-immune cells such as endothelial cells and fibroblasts.
- Cytokines help mediate and regulate immunity, inflammation, and hematopoiesis.

## **Cytokines produced by different cells**



## **Properties of Cytokines:**

**1.Short half-life**: Most cytokines act locally rather than systemically due

to their rapid degradation in the body.

2.Low concentration: They typically act in very low concentrations, but

their effects are potent

## **1.Pleiotropy**:

A single cytokine can act on different cell types and elicit various responses depending on the cell.

2. Redundancy:

Multiple cytokines can have the same effect on a target cell, compensating for

one another in their function.

## 3. Synergy:

Cytokines can work together to amplify their effects.

#### 4. Antagonism:

Some cytokines can inhibit the effects of others, creating a regulatory balance.

# **Properties of Cytokines**



# **Cytokine Families**

| 1 | Interleukins (IL                                    | Mostly produced by leukocytes, they <b>regulate immune responses and inflammation.</b>    |
|---|-----------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2 | Interferons (IFN):                                  | Primarily involved in <b>antiviral responses</b> , they also modulate immune activity.    |
| 3 | <b>Tumor Necrosis Factors</b> (TNF):                | Promote inflammation and can induce <b>apoptosis</b> in target cells.                     |
| 4 | <b>Colony-Stimulating</b><br><b>Factors (CSF)</b> : | Stimulate the <b>proliferation and differentiation of</b><br><b>hematopoietic cells</b> . |
| 5 | Chemokines:                                         | <b>Direct the migration of cells</b> , especially immune cells, during inflammation.      |
| 6 | Transforming Growth<br>Factors (TGF):               | Regulate cell growth, differentiation, and immune suppression.                            |

# **Cytokine Receptors**

| Type I Cytokine<br>Receptors<br>(hematopoietin<br>receptors):       | Bind cytokines like <b>IL-2, IL-4, and</b><br>erythropoietin (EPO).                              | Characterized by conserved motifs and subunits that interact with the <b>JAK-STAT signaling pathway</b> .                 |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| <b>Type II Cytokine</b><br><b>Receptors</b> (interferon receptors): | Bind interferons ( <b>IFNs</b> ) and <b>IL-10</b> family members.                                | Also activate the JAK-STAT pathway but are structurally distinct from Type I receptors.                                   |
| TNF Receptors:                                                      | Bind <b>TNF and related cytokines</b>                                                            | Can activate <b>pathways leading to inflammation</b> ( <b>NF-κB activation</b> ) <b>or apoptosis</b> (via death domains). |
| Immunoglobulin (Ig)<br>Superfamily<br>Receptors:                    | Bind cytokines like <b>IL-1</b>                                                                  | can initiate a variety of <b>signaling cascades</b> that lead to inflammation.                                            |
| Chemokine<br>Receptors:                                             | G protein-coupled receptors (GPCRs) that bind chemokines.                                        | They <b>regulate cell migration</b> during immune responses.                                                              |
| TGF-β Receptors:                                                    | Serine/threonine kinase receptors that bind members of the <b>TGF-<math>\beta</math></b> family. | They regulate cell proliferation, differentiation,<br>and immune suppression through the SMAD<br>signaling pathway.       |



Kuby IMMUNOLOGY, Sixth Edition © 2007 W. H. Freeman and Company



Fig Showing: Schematic diagrams showing the structural features that define the five types of receptor proteins

Adapted from Kuby 6<sup>th</sup> edition

# ACKNOWLEDGEMENT

- The presentation is being used for educational and non-commercial purposes.
- Thanks are due to all the original contributors and entities whose pictures were used to create this presentation.