

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science

Course Title: Pharmacology and Toxicology

Course Code: BM35C7

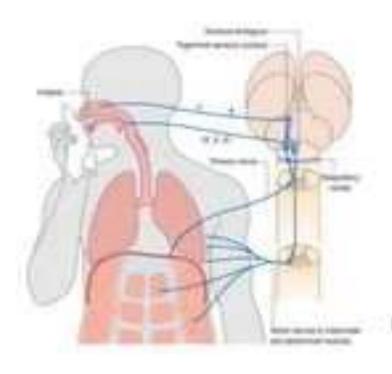
Unit-IV

Pharmacology of Respiratory System - Part 2

Dr. P.S.Dhivya

Guest Lecturer

Department of Biomedical Science


ANTI TUSSIVES

- Antitussives are agents that suppress coughing and are indicated when reducing cough frequency is needed, especially when the cough is dry and nonproductive. (ANTI-oppose; TUSSIVES – related to cough).
- ► The mechanism by which the narcotic and nonnarcotic agents affect a cough's intensity and frequency depends on the principle site of action:
 - CNS depression of the cough center in the medulla(cough reflex)

or

- suppression of the nerve receptors within the respiratory tract.

Mechanism of cough

Stimulation of mechano-or chemoreceptors (throat, respiratory passages or stretch receptors in lungs)

Afferent impulses to cough center (medulla)

Efferent impulses via parasympathetic & motor nerves to diaphragm, intercostal muscles & lung

& intercostal (ribs) muscles conoisy expiration (cough)

CLASSIFICATION OF ANTI TUSSIVES

- Opioids
- Non opioids
- Antihistamines
- *****Bronchodilators

OPIOIDS

CODEINE

- It is opium alkaloid more selective inhibiting the cough center, less potent than morphine.
- Suppresses cough for above 6 hours.
- Abuse liability is low.
- Adverse Effects: Constipation(common), higher doses can cause respiratory depression and drowsiness(especially in children).
- Average adult dosage is 10-30 mg every 4 to 5 hours.

Ethyl morphine:-

- ✓ similar to codeine and is less constipating.
- ✓ Dose:10-15 mg.

Pholcodeine:-

- ✓ similar to codeine, long acting and non addicting (12 hours).
- ✓ Dose:10-15 mg.

NONOPIOIDS

Noscapine

- It depresses the cough center, non-narcotic, no analgesic or dependance inducing properties.
- Equipotent as codeine and is useful in spasmodic cough.
- Adverse effect:Headache and nausea(most common)

Dextromethorphan

- It is found in many cough and cold medications
- It acts on the CNS centre in the brain (medulla oblongata).
- It redues the urge to cough without having the sedative effects associated with opioids.

- Side effects:Dizziness,nausea,drowsiness.vomiting.
- Dosage:10-20 mg adult.

Chlophedianol

- It is a centrally acting antitussive with slow onset and longer duration of action.
- Side effects:Dryness of mouth,irritability.
- © Dosage:20-40 mg.

Benzonatate

- It a local anesthetic, acts peripherally and surppresses the stretch receptors in the respiratory passages, lungs and pleura.
- Adverse effect:dizziness, dysphagia.

ANTIHISTAMINES

- Antihistamines are medications that help alleviate symptoms caused by histamines, a chemical released during allergic reactions.
- They are primarily used to treat allergies, colds and fever.
- Mechanism: Antihistamines block the H1 histamine receptors in the upper respiratory system.
- Other group of antihistamines are H2 blockers and they affect the cells in the gastrointestinal tract.
- Ex:-Diphenhydramine(15-25 mg), chloropheniramine (2-5 mg).

BRONCHODILATORS

- # β2 –sympathomimetics, Methylxanthines, anticholinergics.
- ☐ Useful in controlling cough associated with bronchoconstriction.

 ☐ Useful in controlling cough associated with bronchoconstriction.

PHARMACO

ANTI –
ASTHMATIC
DRUGS

ASTHMA

- Asthma is most common respiratory tract infection. It is the reversible obstruction of large and small airways.
- Bronchial asthma is characterized by hyperresponsiveness of tracheo-bronchial smooth muscle to a variety of stimuli, resulting in narrowing of air tubes, often accompanied by increased secretion, mucosal edema and mucus plugging.

- Asthma is a disease of airways that is characterized by spasmodic narrowing of the air passages.
- It is an episodic air flow obstruction due to bronchospasm.
- The condition exhibits short or long spells of breathing difficulty along with dyspnoea, wheezing and cough.
- Usually small bronchioles and rarely medium sized bronchi are affected.
- Normally lumen of bronchial tree is wider during inspiration and narrowing during respiration.

- This tendency to narrow down is highly exaggerated in asthma and hence expiratory
- breathing difficulty is more prominent.
- It occurs at all ages but nearly 50% of cases develop it before the age of 10 years.
- Both sexes are equally affected in adults, but in youngsters, the male to female ratio
- is 2:1.

SYMPTOMS

- Shortness of breath
- Chest tightness or pain
- Wheezing when exhaling, which is a common sign of asthma in children
- Trouble sleeping caused by shortness of breath, coughing or wheezing
- Coughing or wheezing attacks that are worsened by a respiratory virus, such as a cold or the flu

CAUSES

- Airway narrowing takes place in response to some agents called allergens.
- Allergens Pollens, dust, mites, exposure to cold air, some food materials
- ➤ Cigarette Smoking
- ➤ Air pollution
- ➤ Anxiety
- > Upper respiratory tract infection
- > Emotion stress
- > Strenuous exercise

TYPES OF ASTHMA

- (Based on etiology)
- 1. Extrinsic Asthma: (allergic)
- > Most common type of asthma.
- > It usually starts in infancy or early adulthood.
- > Most patients of this type of asthma have personal and/or family history of preceding allergic disease such as rhinitis, uriticaria or infantile eczema.
- This cause in presence of allergens <u>Eg</u>:
 <u>Theophylline</u>

- 2. Intrinsic asthma (Idiosyncratic, non-atopic):
- ➤ It develops later in adult life with absence of personal or family history of allergy.
- Most of these patients develop typical symptom complex after an upper respiratory tract infection by virus.
- They have many causes other than exposure to allergens.
- Eg: Omalizumab (Xolair)

• 3. Mixed Type:

• > Many patients don't fit neatly into either of the two groups above and exhibit traits from both.

ANTI – ASTHMATIC DRUGS

 Drugs which are used in the treatment of Asthma or bronchial asthma are known as Antiasthmatic drugs.

CLASSIFICATION

- Bronchodilators
- Leukotrienes Antagonists
- Mast cell stabilizers
- Corticosteroids
- Anti IgE antibody

Bronchodilators

- Bronchodilators are a type of medication that make breathing easier by relaxing the muscles in the lungs and widening the airways.
- The 3 most widely used bronchodilators are: beta-2 agonists like **salbutamol**, **salmeterol**, **formoterol and vilanterol**.

Leukotrienes Antagonists

- Leukotriene receptor antagonists (LTRAs) are a class of drugs that treat and prevent asthma and allergic rhinitis by blocking the effects of leukotrienes
- What are leukotrienes?
- Leukotrienes are inflammatory mediators that cause inflammation in the lungs and constriction of bronchial smooth muscle. They are produced from arachidonic acid by 5-lipoxygenase in inflammatory cells in the airways.

Mast cell stabilizers

 Mast cell stabilizers are medications that prevent mast cells from releasing inflammatory mediators, such as histamine, leukotrienes, and prostaglandins.

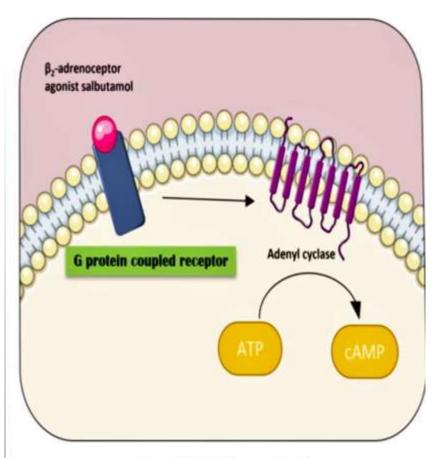
Corticosteroids

- Commonly referred to as steroids, corticosteroids are a type of antiinflammatory drug.
- They are typically used to treat rheumatologic diseases, like rheumatoid arthritis, lupus or vasculitis.
- Specific corticosteroids include the medications **cortisone** and **prednisone**.

Anti IgE antibody

- Anti-immunoglobulin E (IgE) antibodies are used to treat allergic diseases by preventing the development of an allergic reaction.
- Omalizumab (Xolair) is an example of an anti-IgE antibody.

SALBUTAMOL


- →Also known as Albuterol
- Beta 2 adrenergic receptor agonist
- Salbutamol is a short-acting, selective beta2-adrenergic receptor agonist used in the treatment of asthma and COPD.

- ONSET OF ACTION:
- <15 min (inhaled)</p>
- <30 min (pills)
- ELIMINATION HALF LIFE:
- 3.8 to 6 hrs

MECHANISM OF ACTION

• Salbutamol is a selective B2-adrenoceptor stimulant that causes the relaxation of the smooth muscles through the increase of intracellular cyclic adenosine monophosphate (cAMP): bronchial and uterine muscles are relaxed, the peripheral vessels are dilated, heart rate increases and there are metabolic effects (eg. decrease of the plasma potassium levels)

MECHANISM OF ACTION

- Bronchial smooth muscle cell -

- Salbutamol binds and activates B2 receptor
 - Activation of adenylyl cyclase
- Increased cyclic AMP levels
- Reduced intracellular calcium
 - Smooth muscle relaxation

• Increased AMP levels

• Inhibit the release of inflammatory mediators from mast cells

Reduced inflammation

ROUTES OF ADMINISTRATION

- Oral
- IV
- Subcutaneous
- Inhalation

SIDE EFFECTS

- Taste alteration
- Shakiness in legs, arms, hands or feet
- Trembling or shaking of the hand or feet
- Fast, irregular, heartbeat or pulse
- Noisy breathing (rare)
- Redness of the skin (rare)

What is an expectorant?

 An expectorant is a type of cough medicine used to help clear mucus (phlegm) from your airway. You may take an expectorant to help relieve congestion if you have a cold or the flu. Expectorants are available as standalone drugs or as an ingredient in an all-in-one cold or flu medication.

Expectorant

- Expectorant also known as Mucokinetics, which those drugs are increase the movement of mucus. It promotes the secreation of sputum / mucus.
- They gives their action by increasing the bronchial secreation or by reducing the viscosity of mucus, which directly helps its removal by coughing.
- Expectorants that suppose to enhance the clearance of mucus.

Classification:

- Bronchial secreation enhancers:
- sodium or potassium citrate, potassium iodide, guaiphenesin (glyceryl guaiacolate), balsam of Tolu, vasaka, ammonium chloride.

Mucolytics:

Bromhexine, Ambroxol, Acetyl cysteine, carbocisteine.

Mucus secreation enhancers

- Sodium and potassium citrate is increase bronchial secreation by salt action.
- Potassium iodide is secreted by bronchial glands and can irritate the airway mucosa. Prolonged use can affect thyroid function and produce iodism.
- Guaiphenesin, Tolu balsam, and vasaka are plant product that increase bronchial secreation and increase mucociliary clearance.
- Ammonium salts; Nauseating and reflexly increase bronchial secreation.

Guaiphenisin; aids to clearing mucus from the airways improving breathing.

ADME:

Absorption; It is administered orally tablet or liquid form and Bioavailability is 50-60%.

Distribution: It does not have a highly extensive volume of distribution. It has low protein binding, it allows for rapid availability in systemic circulation.

Distribution.

Metabolism: It is primarily metabolized in liver to form inactive metabolites. To be processed by cytochrome P450 enzymes Excretion: The metabolites and unchanged guaiphenesin primarily excreted via kidneys.the elimination of guaiphenesin is approximately 1 hours.

Mucolytics

- Mucolytics (derivatives of cysteine) reduce the disulfide bridges that bind glycoproteins to other protein such as Albumin and secretary IgA.
- This drug also act as antioxidant and may therefore reduce airflow inflammation .
- Various triggers like Oxidative stress, Cigarette smoke, inflammatory cytokines and activated TLRs stimulates the epdidermal growth factor Receptor (EGFR) which plays a critical role in airway mucus secreation from globlet cells and submucosal glands.
- Inhibitors of EGFR kinase such as gefinitib, and erlotinib are currently used for treatment of mucus hypersecreation.

Mucolytics

Bromhexine: alkaloid vasicine, obtained from adathoda vasaka. It is induce cupious bronchial secreation.

- Depolymerise the mucopolysaccharide and the tenacious sputum is broken when mucus plugs are present.
- Adverse effect: Rhinorrhea, lacrimation, gastric irritation, hypersensitivity.

Pharmacokinetics:

- Bromhexine is rapidly absorbed from the gastrointestinal tract and undergoes metabolism in the liver. Its oral bioavailability is stated to be only about 20%. It is widely distributed and plasma concentration reaches within 1-2 hours. About 85 to 90% of a dose is excreted in the urine mainly as metabolites.
- It has a terminal elimination half-life of up to about 12 hours. Bromhexine crosses the blood brain barrier and small amounts cross the placenta.

Mechanism of action

Mucus thinning; this is achieved by cleaving glycoprotein chains in the mucus which helps to reduce the thickness and making it less viscous.

Increased mucociliary clearance; By thinning the muscus, bromhexine facilitate the movement of cilia in the respiratory tract and enhancing the cleavage of mucus from the airways. This helps to improve breathing and reduce coughing.

Ambroxol; metabolites of bromhexine having similar mucolytics action . Dose 15 to 30 mg TDS

ADME:

Absorption; Bioavailability, Ambroxol is well absorbed after oral administration, with a Bioavailability of approximately 70%. It reaches peak plasma concentration Within 1-3 hours.

- Distribution; Ambroxol has a large volume of distribution, it approximately 90% bound to plasma protein, which affect its distribution and half life.
- Metabolism; it is metabolized in the liver to various metabolites including glucuronides and dibromo derivatives.
- Excretion; the elimination of half life of ambroxol is around 8 hours.
- 90% of ambroxol and its metabolites are excreted via the kidney . Primarily as conjugated form with glucoronic acid
- Ambroxol may cause common side effects like nausea, vomiting, stomach discomfort, dry mouth, headache and dizziness etc

- Acetylcysteine; It opens the disulfide bonds in the mucoproteins present in sputum and makes it less viscous.
- It can be administered orally or inhalation as
- Adverse effect; orally administered acetylcysteine can rupture the gastric mucus (contraindicated in patient with peptic ulcer)

ADME:

- Absororption; Acetylcysteine has various oral Bioavailability ranging 6 to 10% due extensive first pass metabolism.peak plasma concentration reaches 1-2 hours.
- Distribution: it has low protein binding (approximately 50%),
 which may influence it's distribution in the body.
- Metabolism: Acetylcysteine metabolised in the liver through deacetylaton to cysteine.
- Excretion: The elimination half life is about 5.6 hours after intravenous administration and can vary after oral dosing.
 Approximately 90% of the dose is eliminated in urine.

Acknowledgement

- The Presentation is being used for educational and non commercial Purposes
- Thanks are due to all the original contributors and entities whose pictures were used in the creation of this presentation.