

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India. Programme : M.Sc., Biomedical Science

- Course Title : Bioinformatics
- Course Code : BM35S1BI

Unit-III

- **TOPIC: MULTIPLE SEQUENCE ALIGNMENT**
 - CLSTALW
 - TCOFFEE

Dr. P. JEGANATHAN

Guest Lecturer Department of Biomedical Science

MULTIPLE SEQUENCE ALIGNMENT

- CLSTALW
- TCOFFEE

"

MULTIPLE SEQUENCE ALIGNMENT

- In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA or protein to identify regions of similarity
- The reason to perform sequence alignment, is to find out the regions of similarity, which refers to functional equivalence and evolutionary relationship between sequences.
- Now, Multiple sequence alignment is basically an alignment of more than two sequences

MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVYLMGKNTMMRKAIRGF - MPREDRATWKSN YFLKIIQLLDD YPKCFIYGADNYGSKOMOQIRMSLRGK-AVVLMGKNTMMRKATRGHL - MPREDRATWKSN YFLKIQLLDD YPKCFIYGADNYGSKOMOYIRLSLRGK-AVVLMGKNTMMRKATRGHL - MPREDRATWKSN YFLKIQLLDD YPKCFIYGADNYGSKOMOYIRLSLRGK-AVVLMGKNTMMRKATRGHL - MPREDRATWKSN YFLKIQLLND YPKCFIYGADNYGSKOMOYIRLSLRGK-AVVLMGKNTMMRKATRGHL - MPREDRATWKSN YFLKIUQLLND YPKCFIYGADNYGSKOMOYIRLSLRGK-AVVLMGKNTMMRKATRGHL - MPRENKAAWKAQYFIKYVEFFDEFPKCFIYGADNYGSKOMONIRTSLRGL-AVVLMGKNTMMRKATRGHL MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFYGSSQLOKIRKSIRGI-GAYLMGKKTMIRKVIRDLA -MSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLOKIRKSIRGI-GAVLMGKKTMIRKVIRDLA -MAKLSKQQKKQMYTEKLSSLTQQYSKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNL ----MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAG ---MRIMAVITOERKIAKWKIEEVKELEOKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAG ---MKRLALALKORKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAG SVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAG MMLAIGKRRYVRTRQYPARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVY -MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG MAEERHHTEH I<mark>PQWK</mark>KDE IEN IK<mark>E</mark>L IQSHKVFGMVR IEG ILATK IQK IRRDLKDV - AVLKV<mark>SRNTLT</mark>E RALNQLG MAAVRGS - - - PPE YKVRAVEE IKRMISSK PVVAIVSFRNVPAGOMOKIRRE FRGK - AE IKVVKNTLLE RALDALC AVKAK<mark>G</mark>OPPSGYEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPOLOEIRAKLRERDTIIRMSRNTLMRIALEEKL -----MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPARQLOKMRQTLRDS-ALIRMSKKTLISLALEKAG MITAESEHKIAPWKIEEVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVA MIDAKSEHKIAPWKIEEVNALKELLKSANVIALIDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVA METKVKAHVAPWKIEEVKTLKGLIKSKPVVAIVDMMDVPAPOLOEIRDKIR-DKVKLRMSRNTLIIRALKEAA MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSOMRRLIRENGGLLRVSRNTLIELAIKKAA MAHVAEWKKKEVEELAKLIKS YPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAA MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVA -MAHVAEW<mark>K</mark>KKEVEELANIIKSY<mark>P</mark>VIALVDVA<mark>G</mark>VPAYPLSKM<mark>R</mark>DKL<mark>R-G</mark>KALL<mark>RVSRNT</mark>LIELAIKRAA ----MSAESERKTETIPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD ----MSESEVRQTEVIPQWKREEVDELVDFIESYESVGVAGIPSROLQSMRRELHGS-AAVRMSRNTLVNRALDEVN MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG MKEVSQQ<mark>K</mark>KELVNEITORIKASRSVAIVO<mark>T</mark>AGIR<mark>I</mark>ROIOIRGKNRGK-INLKVIKKILLFKALENLG MRKINPKKKEIVSELADDITKSKAVAIVDIKGVRTROMODIRAKNROK-VKIKVVKKTLLFKALDSINI MTEPAQWKIDFVKNLENEINSRKVAAIVSIKGLRNNEFOKIRNSIRDK-ARIKVSRARLLRLAIENTGI

Approaches

To carry out MSA, with dynamic programming, multidimensional matrix is needed- the amount of computing time and computer memory it requires increases exponentially as the number of sequence increases. So it cannot be applied for more than 10 sequences.

Hence , Heuristic approaches which engage pairwise dynamic programming algorithms are most often used.

It falls into three categories:

- 1. Progressive alignment type(ex- Clustal tool)
- 2. Iterative alignment type
- 3. Block- based alignment type

STEPS INVOLVED IN MULTIPLE SEQUENCE ALIGNMENT

1. Align the new sequence to each of the previous sequence

2. Create a distance matrix / function for each sequence pair

3. Create a phylogenetic guide tree from the matrices placing the sequences at the terminal nodes.

4. Use the guide tree to determine the next sequence to be added to the alignment.

TOOLS OF MSA

- Clustal W
- Clustal W2
- Clustal Omega
- MAFFT
- MUSCLE
- M View
- T- Coffee
- Web PRANK
- MACAW

ClustalW

- CLUSTALW (eg.https://www.genome.jp/tools-bin/clustalw) is a progressive MSA program, which follows a heuristic approach.
- ClustalW is produced by Julie D. Thompson, Toby Gibson of European Molecules Biology Laboratory.
- ClustalW can create multiple alignment , manipulate exciting alignment, do profile analysis and create phylogenetic trees.
- Alignment can be done by 2 methods;
 - 1. Slow/accurate
 - 2. Fast/approximate
- 'W' stands for 'weighted' (sequences are weighted differently).

- The Clustal software align sequence using a heuristic that progressively builds a multiple sequence alignment from series of pairwise alignment.
- This method works by analysing the sequence as a whole, then utilizing the UPGMA /Neighbor-joining methods to generate a distance matrix.
- A guide tree is then calculated from the scores of the sequences in the matrix, then progressively align the sequence in order of similarity
- Essentially, Clustal creates multiple sequence alignment through three main steps:

The ClustalW Algorithm

- Step 1 : Determined all pairwise alignment between sequence and determine degree of similarity between each pair.
- Step 2 : Construct a similarity tree.
- Step 3 : Combine the alignment starting from the most closely related group to the most distantly related groups using the "once a gap always a gap" rule.

ClustalW steps

Multiple Sequence Alignment by CLUSTALW

	MAFFT	CLUSTALW	PRRN
eneral Setting Parameters			Help
Output Format: CLUS	TAL V		
Pairwise Alignment:		SLOW/ACCURATE	
nter your sequences (with I	labels) below (conv & nast		
inel your sequences (with	abels) below (copy a past	ej. O PROTEIN C DIA	
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF
Support Formats: FAS	TA (Pearson), NBRF/PIR, EI	MBL/Swiss Prot, GDE, CLUSTAL, and	d GCG/MSF

💦 Multiple Sequence Alignment - 🤇 🗙 🔝 ace in UniProtKB	× +		G) – 0
← → C 🔒 uniprot.org/uniprot/?query=ACE&sort=score				* * 🖲
Records that await full manual annotation.		🕜 Help 🛛 UniProtKB help video	Other tutorials and videos	± Downloads

Filter by	SLAST Alon & Download # Add to basket Columns >					Show 25	Show 25		
Reviewed (2 304)	Entry 🗘	Entry name 🗘		Protein names 🕈 🛛 🛽	Gene names 🖨	Organism 🗘 👘	Length 🗘	1	
Swiss-Prot	Q9BYF1	ACE2_HUMAN	-	Angiotensin-converting enzyme 2	ACE2 UNQ868/PR01885	Homo saplens (Human)	805		
Unreviewed (72,000)	Q8R0I0	ACE2_MOUSE	5	Angiotensin-converting enzyme 2	Ace2	Mus musculus (Mouse)	805		
opular organisms	D P09470	ACE_MOUSE	5	Angiotensin-converting enzyme	Ace Dcp1	Mus musculus (Mouse)	1,312		
Human (216) A. thaliana (74)	Q5EGZ1	ACE2_RAT	5	Angiotensin-converting enzyme 2	Ace2	Rattus norvegicus (Rat)	805		
Fruit fly (60)	D P47820	ACE_RAT	-	Angiotensin-converting enzyme	Ace Dcp1	Rattus norvegicus (Rat)	1,313		
Mouse (52)	Q56H28	ACE2_FELCA	-	Angiotensin-converting enzyme 2	ACE2	Fells catus (Cat) (Felis silvestris catus)	805		
5. cerevisiae (42)	Q50JE5	ACE_MESAU	-	Angiotensin-converting enzyme	Ace Dcp1	Mesocricetus auratus (Golden hamster)	1,314		
Other organisms Go	Q5RFN1	ACE2_PONAB	5	Angiotensin-converting enzyme 2	ACE2	Pongo abelii (Sumatran orangutan) (Pongo pygmaeus abelii)	805		
Search terms	Q56NL1	ACE2_PAGLA	5	Angiotensin-converting enzyme 2	ACE2	Paguma larvata (Masked palm civet)	805		
liter "ace" as: author (1)	Q58DD0	ACE2_BOVIN	-	Angiotensin-converting enzyme 2	ACE2	Bos taurus (Bovine)	804		
disease (1)	D P12821	ACE_HUMAN	-	Angiotensin-converting enzyme	ACE DCP, DCP1	Homo saplens (Human)	1,306		
gene name (2,529)	Q9GLN7	ACE_PANTR	-	Angiotensin-converting enzyme	ACE DCP1	Pan troglodytes (Chimpanzee)	1,304		
protein name (409)	D P21192	ACE2_YEAST	5	Metallothionein expression activato	ACE2 YLR131C, L3123, L9606.10	Saccharomyces cerevisiae (strain ATCC 204508 / S288c) (Baker's veast)	770		

More Detail Parameters...

Pairwise Alignment Parameters:

For FAST/APPROXIMATE:		
K-tuple(word) size: 1	, Window size 5	, Gap Penalty: 3
Number of Top Diagonals	5 , Scoring Method:	PERCENT V
For SLOW/ACCURATE:		
Gap Open Penalty: 10.0	, Gap Extension Penalty: 0	.1
Select Weight Matrix: BLO	SUM (for PROTEIN) 🗸	
(Note that only parameters for the	e algorithm specified by the	above "Pairwise Alignment" are valid.)
Multiple Alignment Parameters:		
Gap Open Penalty 10	, Gap Extension Penalty: 0	.05
Weight Transition: O YES	(Value: 0.5), 🔍 N	0
Hydrophilic Residues for Pr	roteins GPSNDQERK	
Hydrophilic Gaps: 🔘 YES		
Select Weight Matrix: BLO	SUM (for PROTEIN) 🗸	
Type additional options (delimited by w	hitespaces) below:	
(-options for help)		
Execute Multiple Alignment Reset		
Feedback KEGG Genom	eNet k	(yoto University Bioinformatics Center

Pairwise Alignment Parameters:

For FAST/APPROXIMATE:

K-tuple(word) size: 1 , Window size: 5 , Gap Penalty: 3 Number of Top Diagonals: 5 , Scoring Method: ABSOLUTE v Wilbur & Lipman algorithm (Heuristic approach)

For SLOW/ACCURATE:

Gap Open Penalty: 10 , Gap Extension Penalty: 0.1 Select Weight Matrix: BLOSUM (for PROTEIN) v Dynamic programming algorithm Choose this for less number of short sequences.

Multiple alignment parameters

Gap Extension Penalty: 0.05 Gap Open Penalty: 10 Weight Transition: OYES (Value: 0.5), **O**NO Hydrophilic Residues for Proteins: GPSNDQERK Hydrophilic Gaps: O YES O NO Select Weight Matrix: BLOSUM (for PROTEIN) V

For proteins- series of matrices are used depending upon the similarity of sequences aligned at each step.

For DNA –Single matrix is used.

During MSA to control gaps. No penalty for terminal gaps

DNA transition score: 0-1 For closely related sequence it should be near to 0 and vice versa.

For Loops and random coil regions where insertions and deletions are common.

Includes gaps where 5 or more hydrophillic residues are seen consecutively.

Can alter the residues in option.

Result

Sequence type explicitly set to Protein Sequence format is Pearson Sequence 1: ACE2_HUMAN 805 aa Sequence 2: ACE2 MOUSE 805 aa Sequence 3: ACE2 RAT 805 aa Sequence 4: ACE2 CAT 805 aa Sequence 5: ACE2 CIVET 805 aa Sequence 6: ACE2_ORANGUTAN 805 aa Sequence 7: AGE2 COW 804 aa Start of Pairwise alignments Aligning...

Sequences (1:2) Aligned. Score: 82.1118 Sequences (1:3) Aligned. Score: 82.4845 Sequences (1:4) Aligned. Score: 85.2174 Sequences (1:5) Aligned. Score: 83.4783 Sequences (1:6) Aligned. Score: 98.1366 ** CLUSTALW Result

× +

C genome.jp/tools-bin/clustalw

← Sequence 6: ACE2_ORANGUTAN 805 aa Sequence 7: ACE2 COW 804 aa Start of Pairwise alignments Aligning... Sequences (1:2) Aligned, Score: 82,1118 Sequences (1:3) Aligned. Score: 82.4845 Sequences (1:4) Aligned. Score: 85.2174 Sequences (1:5) Aligned. Score: 83.4783 Sequences (1:6) Aligned. Score: 98.1366 Sequences (1:7) Aligned. Score: 80.8458 Sequences (2:3) Aligned. Score: 90.4348 Sequences (2:4) Aligned. Score: 81.7391 Sequences (2:5) Aligned. Score: 81.6149 Sequences (2:6) Aligned. Score: 81.7391 Sequences (2:7) Aligned. Score: 80.2239 Sequences (3:4) Aligned. Score: 81.6149 Sequences (3:5) Aligned. Score: 81.118 Sequences (3:6) Aligned. Score: 81.9876 Sequences (3:7) Aligned. Score: 80.0995 Sequences (4:5) Aligned. Score: 93.2919 Sequences (4:6) Aligned. Score: 84.9689 Sequences (4:7) Aligned. Score: 82.9682 Sequences (5:6) Aligned. Score: 83.2298 Sequences (5:7) Aligned. Score: 81.592 Sequences (6:7) Aligned. Score: 81.0945 Guide tree file created: [clustalw.dnd] There are 6 groups Start of Multiple Alignment Aligning... Group 1: Sequences: 2 Score:13303 Group 2: Sequences: 2 Score:13025 Group 3: Sequences: 4 Score:12298 Score:12748 Group 4: Sequences: 2 Group 5: Sequences: 6 Score:12194 Group 6: Sequences: 7 Score:12107 Alignment Score 92252 CLUSTAL-Alignment file created [clustalw.aln]

clustalw.aln

CLUSTAL 2.1 multiple sequence alignment

× +

G Genome.jp/tools-bin/clustalw

CLUSTAL 2.1 Multiple Sequence Alignments

Sequence type explicitly set to Protein Sequence format is Pearson Sequence 1: ACE2 HUMAN 805 aa Sequence 2: ACE2_MOUSE 805 aa Sequence 3: ACE2_RAT 805 aa Sequence 4: ACE2 CAT 805 aa 805 aa Sequence 5: ACE2_CIVET Sequence 6: ACE2_ORANGUTAN 805 aa Sequence 7: ACE2_COW 884 aa Start of Pairwise alignments Aligning

Sequences (1:2) Aligned. Score: 82.1118 Sequences (1:3) Aligned. Score: 82.4845 Sequences (1:4) Aligned. Score: 85.2174 Sequences (1:5) Aligned. Score: 83.4783 Sequences (1:6) Aligned. Score: 98,1366 Sequences (1:7) Aligned. Score: 80.8458 Sequences (2:3) Aligned. Score: 90.4748 Sequences (2:4) Aligned. Score: 81.7391 Sequences (2:5) Aligned. Score: 81.6149 Sequences (2:6) Aligned. Score: 81.7391 Sequences (2:7) Aligned. Score: 80.2239 Sequences (3:4) Aligned. Score: 81.6149 Sequences (3:5) Aligned. Score: 81.118 Sequences (3:6) Aligned. Score: 81.9876 Sequences (3:7) Aligned. Score: 80.0995 Sequences (4:5) Aligned. Score: 93.2919 Sequences (4:6) Aligned. Score: 84.9689 Sequences (4:7) Aligned. Score: 82.9682 Sequences (5:6) Aligned. Score: 83.2298 Sequences (5:7) Aligned. Score: 81.592 Sequences (6:7) Aligned. Score: 81.0945 Guide tree file created: [clustalw.dnd]

There are 6 groups Start of Multiple Alignment

Aligning...

Group 1: Sequences: 2 Score:13303 Group 2: Sequences: 2 Score:13025

clustalw.dnd

ACE2_HUMAN:0.00820, ACE2_ORANGUTAN:0.01043) :0.07143, (ACE2_CAT:0.02784, ACE2_CIVET:0.03924) :0.04347) :0.00480, (ACE2_MOUSE:0.04728, ACE2_RAT:0.04837) :0.05047, ACE2_COW:0.10008); CLUSTALW Result

× +

Sequence 6: ACE2_ORANGUTAN 805 aa Sequence 7: ACE2_COW 804 aa Start of Pairwise alignments Aligning...

Sequences (1:2) Aligned. Score: 82.1118 Sequences (1:3) Aligned. Score: 82.4845 Sequences (1:4) Aligned. Score: 85.2174 Sequences (1:5) Aligned. Score: 83.4783 Sequences (1:6) Aligned. Score: 98.1366 Sequences (1:7) Aligned. Score: 80.8458 Sequences (2:3) Aligned. Score: 98.4348 Sequences (2:4) Aligned. Score: 81.7391 Sequences (2:5) Aligned. Score: 81.6149 Sequences (2:6) Aligned. Score: 81.7391 Sequences (2:7) Aligned. Score: 80.2239 Sequences (3:4) Aligned. Score: 81.6149 Sequences (3:5) Aligned. Score: 81.118 Sequences (3:6) Aligned. Score: 81.9876 Sequences (3:7) Aligned. Score: 80.0995 Sequences (4:5) Aligned. Score: 93.2919 Sequences (4:6) Aligned. Score: 84.9689 Sequences (4:7) Aligned. Score: 82.9682 Sequences (5:6) Aligned. Score: 83.2298 Sequences (5:7) Aligned. Score: 81.592 Sequences (6:7) Aligned. Score: 81.0945 Guide tree file created: [clustalw.dnd]

There are 6 groups Start of Multiple Alignment

Aligning...

Group 1: Sequences: 2 Score:13303 Group 2: Sequences: 2 Score:13025 Group 3: Sequences: 4 Score:12290 Group 4: Sequences: 2 Score:12294 Group 5: Sequences: 6 Score:12194 Group 5: Sequences: 7 Score:12107 Alignment Score 92252

CLUSTAL Alignment file created [clustalw.aln]

clustalw.aln

CLUSTAL 2.1 multiple sequence alignment

clustalw.dnd

(ACE2_HUMAN:0.00820, ACE2_ORANGUTAN:0.01043) :0.07143, (ACE2_CAT:0.02784, ACE2_CIVET:0.03924) :0.04347) :0.00480, (ACE2_MOUSE:0.04728, ACE2_RAT:0.04837) :0.05047, ACE2_COW:0.10008);

C 1 1 1		 Character .
ιw	514	RESULT

clustalw.aln

ACE2 HUMAN

ACE2 CIVET

ACE2 MOUSE

ACE2 HUMAN

ACE2 CIVET

ACE2 MOUSE

ACE2 HUMAN

ACE2_CIVET

ACE2 MOUSE

ACE2 HUMAN

ACE2 CIVET

ACE2 MOUSE

ACE2 HUMAN

ACE2 CIVET

ACE2 MOUSE

ACE2 CAT

ACE2 RAT

ACE2 COW

ACE2 ORANGUTAN

ACE2 CAT

ACE2 RAT

ACE2_COM

ACE2 ORANGUTAN

ACE2 CAT

ACE2 RAT

ACE2 COW

ACE2 ORANGUTAN

ACE2 CAT

ACE2 RAT

ACE2 CON

ACE2_ORANGUTAN

ACE2 CAT

ACE2 RAT

ACE2 COW

ACE2 ORANGUTAN

C genome.ip/tools-bin/clustalw

CLUSTAL 2.1 multiple sequence alignment

×

+

M5555WLLLSLVAVTAA05TIEEQAKTFLDKFRHEAEDLFY055LASWNYNTNITEENV0

M5G5SWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQ5SLASWNYNTNITEENVQ

MSGSFWLLLSFAALTAA05TTEELAKTFLEKFNHEAEELSY055LASMNYNTNIT0ENV0

MSGSFWLLLSFAALTAAQSTTEELAKTFLETF/NYEAQELSYQ5SVASWNYNTNITDENAK

MSSSSWLLLSLVAVTTAOSLTEENAKTFLNNFNOEAEDLSYOSSLASMNYNTNITEENAO

MSSSCWLLLSLVAVATA05LIEEKAESFLNKFN0EAEDLSY05SLASWNYNTNITEENA0

MTGSFWLLLSLVAVTAA0STTEEQAKTFLEKFNHEAEDLSY0SSLASMNYNTNITDENV0 alla assasilallana wa aliasilan asila assalassassassasila

hMNINAGDKW5AF1KEQSTLAQMYP1.0EIONLTVKLQLQALQQNG5SVLSEDKSKRLNTIL

NMNINAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNG5SVLSEDKSKRLNTIL

KNNEAGAKWSAFYEEOSKLAKTYPLAETHNTTVKROLOALOOSGSSVLSADKSORLNTTL

NMNEAGAKW5AYYEEQ5KLAQTYPLAEIQDAKIKRQLQALQOSG55VLSADKSQRLNTIL

KMSEAAAKWSAFYEEOSKTAOSFSLOEIOTPIIKROLOALOOSGSSALSADK#KOLNTIL

KMNEAAAKWSAFYEEOS&IAONFSLOETONATIKROLKALOOSGSSALSPDKHKOLNTIL KMNEARAKWSAFYEEOSRMAKTYSLEETONLTLKROLKALOHSGTSALSAEKSKRLNTIL

18114 AAAA1 1848 41 1.4 491 1.4 84148911914.94 1811188848

NTMSTIYSTGKVCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLY

NTMSTIYSTGKVCNPNNPOECLLLEPGLNEIMANSLDYNERLWANESWRSEVGKOLRPLY

NAMSTIYSTGKACNPNNPQECLLLEPGLDDIMENSKDYNERLWANEGNRAEVGKQLRPLY

NAMSTIYSTGKACNPNNPQECLLLEPGLDNIMENSKDYNERLWAWEGWRAEVGKOLRPLY

NTMSTIYSTGKVCNPKNPDECLLLEPGEDEIMATSTDYNSRLWANEGNRAEVGKDLRPLY

NTMST IYSTGKVCNSMNPOECFLLEPGLDE IMAT STDYNRRL HANEGWRAEVGKOL RPLY

NKMSTIYSTGKVEDPN-TOECLALEPGEDDIMENSRDYNRREMANEGNRAEVGKOLRPLY

EEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGOLIEDVEHTFEEIKPLYEHL

EEYVVEKNEMARANHYEDYGDYWRGDYEVNGVDSYDYSRGOLIEDVEHTFEEIXPLYEHL

EEYVALKNEMARANNYEDYGDYWRGDYEEEWTDGYNYSRSQL1KDVEHTFTQ1KPLYDHL

EEYVALKNEMARANNYEDYGDYWRGDYEEEWTGGYNYSRNOLIODVEDTFEOIXPLYOHL

EEYVVLKNEMARANNYNDYGDYWRGDYEAEGADGVNYNRNOL IEDVERTFAEIKPLYEHL

EEYVVLKNEMARAM/VEDYGDYWRGDYEAEGVEGYMY/IRNQLIEDVENTFKEIKPLYEQL

EEYVVLENEMARANNYEDYGDYWRGDYEVTGAGDYDY5RDOLMKDVERTFAETKPLYEOL

HAYVRAKLMMAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGOKPNIDVTDAMVD0

HAYVRAKLINAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFG0KPHIDVTDAMVD0

HAYVRAKLMDTYPSRISPTGCLPAHLLGDMWGRFWTNLYPLTVPFGQKPNIDVTDAMVNQ

HAYVRAKLMDTYPSRISRTGCLPAHLLGDMuGRFWTNLYPLTVPFGQKPNIDVTDAMVNQ

HAYVRRXLMDTYPSYISPTGCLPAHLLGDMWGRFWTNLYPLTVPFAQKPhIDVTDAMMQ

HAYVRTKLMEVYPSYTSPTGCLPAHLLGDMuGRFWTNLYPLTTPFLOKPNIDVTDAMVNO

HAYVRAKLMHTYPSYTSPTGCLPAHLLGDMMGRFWTHLYSLTVPFEHKPSTDVTEKMENO

'* 'indicates positions which have a single fully conserved residue

• ': 'indicates that one of the following 'strong' groups is fully conserved

STA NEQK NHQK NDEQ

QHRK

MILV

MILF

ΗY

FYW

ClustalW output -Symbol

YASIDISKGENNPGFQNTDDVQTSF	
YASIDISKGENNPGFQNTDDVQTSF	
YASYDLSKGENNPGFQHADDVQTSF	
YASVDLNKGENNPGFQHADDVQTSF	
YDSMDIGKGESNAGFQNSDDAQTSF	
YDSMDIGKGESNAGFQNSDDAQTSF	
YGSVDLNKGENNSGFQNIDDVQTSL	
* *:*:.***.*.***: **.***:	

Example:

Cont,

- '. 'indicates that one of the following 'weaker' groups is fully conserved
 - CSA
 - ATV
 - SAG
 - STNK
 - STPA
 - SGND
 - SNDEQK
 - NDEQRK
 - NEQHRK
 - FVLIM
 - HFY

Amino acid Substitutions

- 1. Aliphatic, aromatic
- 2. Size

- 3. Acidic, Basic (charged), Neutral (uncharged)
- 4. Hydrophobic (non-polar), hydrophilic (polar)

T-COFFEE

- T-COFFEE (Tree –based Consistency Objectives Function For AlignmEnt Evaluation) is a multiple sequence alignment software using a progressive approach.
- It generates a library of pairwise alignment to guide the multiple sequence alignment.
- It has advanced features to evaluate the quality of alignments and capacity for identifying occurrence of motifs.
- The main characteristic of T-coffee is that it will combine results obtained with several alignment methods. This tool can align up to 500 sequences or a maximum file size of 1 MB.
- T coffee integrates different Pair-wise alignment techniques and combines different multiple alignment methods and sequence alignment methods and plug in user knowledge

ALGORITHMS

How coffee works?

- T-Coffee alignment utilizes heterogeneous data sources and provide simple and flexible means of generating multiple alignment.
- Create a library of pairwise alignment for each possible pairs of sequences and compare each pair of aligned residues in the MSA to its counterpart in the library.
- T-coffee can complete multiple alignment using a library that was generated using a mixture of local and global pair-wise alignment.
- Weight alignment by the percentage of identical residues.
- Residues that consistently match up, end up with very high weight, this is what is meant by CONSISTENCY-BASED SCORING.

The overall consistency score is equal to the number of pairs that occurs in both MSA and the library, divided by the total no. Of pairs in MSA.

T- Coffee and Consistency....

- 1. With T-coffee we pre -process a data set of all pair -wise alignment between the Sequences.
- 2. This provides us with a library of alignment information that can used to guide the progressive alignment.
- 3. Intermediate alignment are based not only on the sequence to be aligned next, and also on how all of the sequence align with each other.

T-Coffee

Input form	Web services	Help & Documentation	Bioinformatics Tools FAQ	🖙 Feedback	<share< th=""><th></th></share<>	

Tools > Multiple Sequence Alignment > T-Coffee

Multiple Sequence Alignment

T-Coffee is a multiple sequence alignment program. Its main characteristic is that it will allow you to combine results obtained with several alignment methods.

Important note: This tool can align up to 500 sequences or a maximum file size of 1 MB.

STEP 1 - Enter your input sequences	
Enter or paste a set of	
PROTEIN	*
sequences in any supported format:	
>Seg1	*

Input form	Web services	Help & Documentation	Bioinformatics Tools FAQ		🗣 Feedback	<share< th=""></share<>
>Seq5 MEEPQS IPAAPAP AIYKQS0 SCMGGI KPLDGE	SDPSVEPPLSQE APSWPLSSSVF QHMTEVVRRCF MNRRPILTIITLE YFTLQDQTSFQ	ETFSDLWKLLPENNVLSF PSQKTYQGSYGFRLGFL PHHERCSDSDGLAPPQH DSSGNLLGRNSFEVRVC KENC	PLPSQAVDDLLLSPDDIAQ HSGTAKSVTCTYSPALNK ILIRVEGNLRVEYLDDRNT CACPGRDRRTEEENFRKK	WFIEDPGPDEAPRMSEAASPVDPAPAAP MFCQLAKTCPVQLWVDSTPPPGTRVRAM FRHSVVVPYEPPEVGSDCTTIHYNYMCNS GEPHHELPPGSTKRALPNNTSSSPQPKK		O .
Or upload a	a file: Choose File	No file chosen		Use a example sequence C	Clear sequence See more ex	ample inputs
STEP 2 -	Set your Param	eters				
HTML						٣
The defau More opti	It settings will full ons) (Click he	fill the needs of most user re, if you want to view or	rs. change the default settings	.)	B	
STEP 3 -	Submit your job					
🗌 Be notifie	ed by email (<i>Tick</i> th	his box if you want to be r	notified by email when the r	esults are available)		

Results < T-Coffee < Multiple Se X + ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=tcoffee-I20220819-113257-0191-82986554-p1m T-Coffee Input form Web services Help & Documentation **Bioinformatics Tools FAQ** Feedback Tools > Multiple Sequence Alignment > T-Coffee Results for job tcoffee-I20220819-113257-0191-82986554-p1m Result Summary Guide Tree Phylogenetic Tree Results Viewers Submission Details Alignments **Download Alignment File** T-COFFEE, Version 13.45.0.4846264 (2020-10-15 17:52:11 - Revision 5becd5d - Build 620) Cedric Notredame CPU TIME:0 sec. SCORE=655 BAD AVG GOOD AC105292.3 1867 54 68 AE014298.5 9585 : CP023329.1 9479 : 68 68 CP023335.1 9479 : NM 001272455.2 : 68 65 cons . AC105292.3 1867 GA----TTTGCTT-CTCTGTTGTTTGGTTCA-ATCGTCT--TTAT AE014298.5 9585 ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT CP023329.1 9479 ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT CP023335.1 9479 ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT NM 001272455.2 ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT **** * * ** ** *** cons AC105292.3 1867 TTTGCTTCACTGTTGACAAACATTCCATTT-GTTTATATCATTTA AE014298.5 9585 C-TCCAACCATGCCGCCCCAAAACCGATTTTCAGTTTTTGACCTT https://www.ebi.ac.uk/Tools/services/web/toolresult.ebi?jobld=tcoffee-I20220819-... CGATTTTCAGTTTTTGACCTT mmm ~ A ~~mm へ 90 (((())) ENG P Type here to search 1

Ø

х

Results < T-Coffee < Multiple Se X	+		\sim	-	C	ļ
← → C 🔒 ebi.ac.uk/Tools/se	rvices/web/toolresult.ebi?jobld=tcoffee-l20220819-113257-0191-82986554-p1m	Q	Ê	☆		-
CPU TIME:0 sec. SCORE=655 * BAD AVG GOOD						
AC105292.3 1867 AE014298.5 9585 CP023329.1 9479 CP023335.1 9479 NM_001272455.2 cons	: 54 : 68 : 68 : 68 : 68					
AC105292.3 1867 AE014298.5 9585 CP023329.1 9479 CP023335.1 9479 NM_001272455.2	GATTTGCTT-CTCTGTTGTTTGGTTCA-ATCGTCTTTAT ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT ATGCCATTTGTGGACCCCTCAGCGTCGCACATATACACGCCATAT					
cons	**** * * * * * * * * * ***					
AC105292.3 1867 AE014298.5 9585 CP023329.1 9479 CP023335.1 9479 NM_001272455.2	TTTGCTTCACTGTTGACAAACATTCCATTT-GTTTATATCATTTA C-TCCAACCATGCCGCCCCAAAACCGATTTTCAGTTTTTGACCTT C-TCCAACCATGCCGCCCCCAAAACCGATTTTCAGTTTTTGACCTT C-TCCAACCATGCCGCCCCCAAAACCGATTTTCAGTTTTTGACCTT C-TCCAACCATGCCGCCCCCAAAACCGATTTTCAGTTTTTGACCTT					
cons	* * * * * * * * * * * * * * * * *					

🐂 💿 🔹 🔊

へ 980 (売 引)) E

Tree Data

De

\
(
AC105292.3_18679-22817:0.52693,
AE014298.5_9585675-9589813:0.00000)
:0.00000,
CP023329.1_9479705-9483843:0.00000)
:0.00000,
CP023335.1_9479704-9483842:0.00000,
NM_001272455.2_1-4139:0.00000);

Applications of MSA

- Detecting similarities between sequences(closely or distinctly related).
- Detecting conserved regions or motifs in sequences.
- Detecting of structural homologies.
- Thus, assisting the improved prediction of secondary and tertiary structures of proteins.
- An important step for phylogenetic analysis.
- Useful in designing experiments to test and modify the function of specific proteins and also in predicting the function and structure of proteins, and in identifying new members of protein families.

1. Statistics for Bioinformatics

-Julie Dawn Thompson

2. Multiple Sequence Alignment methods

-David J.Russell

3. Bioinformatics for DUMMIES (2nd Edition)

-Jean – Micha Claverie, Cedric Notredame

