

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

> Course Title : Genomics Course Code : BM47C12

> > Unit-V Gene Therapy

Dr. K. PREMKUMAR Professor Department of Biomedical Science

Gene therapy

 It is a technique in which, a "normal" gene is inserted into the genome to replace an "abnormal," disease-causing gene.

• Two types of Gene therapy are in practice.

- Germline gene therapy
 - germ cells, i.e., sperm or eggs, are modified by the introduction of functional genes, which are ordinarily integrated into their genomes.
- Somatic cell gene therapy
 - the therapeutic genes are transferred into the somatic cells of a patient.

The first gene therapy was performed on September 14th, 1990

Ex-Vivo Gene therapy

Ex-vivo gene therapy is performed by transfecting or infecting patient-derived cells in culture with vector DNA and then reimplanting the transfected cells into the patient. Two types of ex-vivo gene therapies under development are those directed at fibroblasts and hematopoietic stem cells.

In vivo Gene therapy

 In vivo gene therapy requires that the gene transfer vector be delivered in a cell-type selective manner, either through direct tissue injection, or perhaps someday, by receptor-mediated processes.

Gene Delivery System

There are two types of Gene delivery system

- Viral and
- Non-viral
- Viruses are obligate intra-cellular parasites, designed to infect cells, often with great specificity to a particular cell type.
- Non-viral methods present certain advantages over viral methods, with simple large scale production and low host immunogenicity.

Viral vectors

- Viral vectors tend to be very efficient at transfecting their own DNA into the host cell.
- Replicate by inserting their DNA into a host cell.
- Gene therapy can use this to insert genes that encode for a desired protein to create the desired trait
- Four types of viral vectors are used
 - Retrovirus
 - Adenovirus
 - Adeno-associated virus
 - Herpes Simplex virus

Retrovirus

 Retroviruses are a class of enveloped viruses containing a single stranded RNA molecule as the genome.

- Following infection, the viral genome is reverse transcribed into double stranded DNA, which integrates into the host genome & is expressed as proteins.
- The viral genes are replaced with the transgene of interest.
- The essential regions include the 5' & 3' LTRs & the packaging sequence lying downstream of the 5' LTR.
- Transgene expression can either be driven by the promoter/enhancer region in the 5' LTR, or by alternative viral or cellular promoters.

- Transgene integrated into the genome is stable.
- Includes region that can stably express the therapeutic gene.

Disadvantages

- The target cells should be dividing.
- Integration can activate a proto-oncogene.
- May evoke immune response

Adenovirus

- Adenoviruses are non-enveloped viruses containing a linear double stranded DNA genome.
- The life cycle does not normally involve integration into the host genome, rather they replicate as episomal elements in the nucleus of the host cell.
- There are four early transcriptional units (E1, E2, E3 & E4), which have regulatory functions, & a late transcript, which codes for structural proteins.
- Vectors contain only the inverted terminal repeats (ITRs) & a packaging sequence around the transgene, all the necessary viral genes being provided in trans by a helper virus. (gutless vectors)

- Can target non-dividing cells.
- Does not activate other genes.

Disadvantages

- Majority will be degraded.
- Promoter gets inactivated soon.
- May evoke immune response

Adeno-associated virus

- Adeno-associated viruses (AAV) are non-pathogenic human viruses depend on a helper virus, usually adenovirus, to proliferate.
- The wild type genome is a single stranded DNA molecule, consisting of two genes Rep and Cap.
- Integrates into the host genome.
- The rep & cap genes are replaced by the transgene of interest.
- The helper virus provides the Rep and Cap genes.

- Can target both dividing & non-dividing cells.
- Prolonged transgene expression.

Disadvantages

- Cant replicate without helper virus.
- Can activate other genes.
- May evoke immune response

Herpes Simplex Virus

- Herpes simplex virus type 1 (HSV-1) is a human neurotropic virus, used as a vector for gene transfer to the nervous system.
- The viral genome is a linear double stranded DNA molecule.
- Two basic approaches have been used for production of HSV-1 vectors, namely amplicons & recombinant HSV-1 viruses.
- Amplicons consists of col E1 ori (an Escherishia coli origin of replication), OriS (the HSV-1 origin of replication), HSV-1 packaging sequence, the transgene under control of an immediate-early promoter & a selectable marker.
- Recombinant viruses are made replication deficient by deletion of one of the immediate-early genes, which is provided in trans.

- Able to infect neurons.
- Does not integrate into the genome.
- Less pathogenic.
- Disadvantages
 - Toxic to neurons in culture.
 - Promoter gets inactivated soon.
 - May evoke immune response.

Non-Viral vectors

 Direct introduction of therapeutic DNA to the target cell. (Naked DNA)

- Creation of artificial lipid sphere with aqueous core, liposome that can Carry the therapeutic DNA through membrane . (Cationic lipids)
- Chemically linking DNA to molecule that will bind to special cell receptors which facilitates DNA to be engulfed by cell membrane. (ploymers)

Naked DNA

- This is the simple method used to transfect Dna into the cells.
- Carried out by simple intramuscular injection.
- Expression is low when compared with other methods.
- Application of electroporation and "Gene gun" facilitates more efficiency.

Cationic Lipids

- To improve DNA delivery and protection from damage the DNA is covered with lipids in an organised structure called Lipoplex.
- Cationic lipids, due to their positive charge, condense negatively charged DNA molecules so as to facilitate the encapsulation of DNA into liposomes.
- It also enhances the stability of Lipoplex.
- Major route of uptake is believed to be endocytosis.

- Commomly used for gene transfer in cancer.
- Useful in treating genetic diseases.

Disadvantages

- Dose dependent toxicity is seen.
- Endosomes formation more susceptible to Lysosomal degradation.

Polymers

- Complexes of polymers with DNA are called polyplexes.
- Most polyplexes consist of cationic polymers and their production is regulated by ionic interactions.
- Polyplexes release DNA into the cytoplasm through cotransfection with endosome-lytic agents.
- Polyethylenimine, chitosan and trimethylchitosan does not require endosome-lytic agents since they have their own method of Endosomal disruption.

Prodrug activation therapy

- In cancer chemotherapy , insufficient therapeutic index ,lack of specificity, leads to emergence of drug resistance cell subpopulations.
- One approach to improve the specificity of chemotherapy could be enzyme-activating prodrug therapy in which the transgenes encode enzymes that convert specific, less-toxic prodrugs to toxic metabolites in the tumour cells.(GDEPT)
- In the first step, the gene for a foreign enzyme (viral, bacterial or yeast) is delivered and targeted in a variety of ways to the tumor.
- In the second step, a far less-toxic prodrug is administered systemically and converted to its active cytotoxic substance.

- The drug also exhibits Bystander effects which kills neighboring tumor cells also.
- In addition, dying cells can induce host immune responses mediated by natural killer (NK) cells and T-cells.

Advantages of GDEPT

- Expressed exclusively in tumor cells.
- Concentration sufficient to activate prodrug.
- Catalytic activity adequate for prodrug activation under physiological condition.
- Bystander effect
- Less cytotoxic, stable.
- Substrate for activating enzyme under physiological conditions.
- Diffuse --- tissue interstitium.
- Good pharmacological and pharmacokinetic properties.
- Drug formed –highly diffusible or taken up by cells.

RNA Interference (siRNA & miRNA)

- RNAi is a biological phenomenon in which a strand of RNA cause the destruction of an mRNA with that the gene's message is effectively destroyed.
- Andrew Z. Fire and Craig C. Mello were awarded noble prize for their discovery of RNA interference – gene silencing by double stranded RNA in 2006.
- RNAi gene therapy has the opposite effect. When used as gene therapy, RNAi turns off genes that are overactive in such diseases as cancer.
- Silencing was specific for a mRNA homologous to the dsRNA-other mRNAs were unaffected.

- Most endogenous miRNA genes are transcribed by RNA polymerase II before nuclear processing by the Drosha–DGCR8 complex.
- Once in the cytoplasm, dsRNAs still requires processing by TRBP–Dicer.
- All dsRNAs converge in loading the guide strand into RISC.
- Exogenous siRNAs do not need Dicer processing.
- Endogenous miRNAs mostly lead to translational repression, and exogenous dsRNAs to target cleavage

- DGCR8: DiGeorge syndrome critical region 8
- •Exp5: exportin-5
- •RISC: RNA-induced silencing complex
- •TRBP, trans-activation-responsive RNA binding protein.

- Gene silencing was efficient and specific.
- Low amounts sufficient for silencing.
- Protects against viral infections.

Disadvantages

- High doses may be fatal.
- siRNAs may evoke immune response.
- May shut down normal genes.

Gene therapy for diseases

- Gene therapy has recently emerged as a effective therapy that promises to overcome several drawbacks in the available therapeutic approaches.
- Clinical trails to treat various genetic disorders using gene therapy is progressing with some promising outcomes.
- Recently gene therapy for various diseases like cystic fibrosis, multiple sclerosis, Parkinson's disease, Alzheimer's disease were established.

Coronary heart disease

- Coronary heart disease is characterised by gradual narrowing of the lumen in the arteries and subsequent reduction in blood flow to the heart.
- BIOBYPASS, a standard modified adenovector with a standard cytomegalovirus (CMV) promoter carrying the transgene encoding vascular endothelial growth factor injected along CABG yielded promising results.

Cystic fibrosis

- Cystic fibrosis is a heterogeneous recessive genetic disorder with features that reflect mutations in the cystic fibrosis transmembrane conductance regulator (*CFTR*) gene.
- Gene therapy involves inhaling a spray that delivers normal DNA to the lungs.

Multiple sclerosis

- MS is known to be a chronic inflammatory disease in which patients exhibit elevated levels of proinflammatory cytokines.
- Anti-inflammatory cytokines such as IFN-β, IL-10, or IL-4 will be administered for treatment using gene delivery systems.
- Researchers usually engineer either T cells or DC ,cultured in a petri dish, to produce various therapeutic compounds, usually antiinflammatory cytokines and then delivered to the host cell.

Parkinson's disease

- Parkinson's disease is a movement disorder caused by a progressive depletion of the brain chemical dopamine.
- In Parkinson's disease , GABA is reduced in an area of the brain called the subthalamic nucleus.
- Gene therapy involves infusion of vector carrying GAD, glutamic acid decarboxylase gene. This enzyme is critical in controlling GABA.

Huntington's chorea

- Huntington's chorea is a disease that is a progressive, degenerative neurological disorder that slowly takes away a persons ability brain,to walk, talk, and reason.
- Caused by a mutation in the gene called "huntingtin" that leads to a toxic accumulation of abnormal protein in the brain.
- An exvivo gene therapy involves delivery of genetically modified BHK cells(hamster kidney cells) that delivers ciliary neurotrophic factor (CNTF).
- CNTF proved to protect neurons.

Alzheimer's disease

- Alzheimer's disease is the most common form of dementia commonly recognized as memory loss.
- CERE-110 is a adeno-associated viral delivery of Nerve Growth Factor during surgery into a part of the brain affected by Alzheimer's disease.
- The gene will instruct brain cells to produce more of a protein, NGF which helps nerve cells survive and function properly.