

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical Science (5 Year Integrated Program)

Course Title : Stem Cell Biology and Regenerative Medicine Course Code : BM59C17

Unit-II

Stem Cells – Types and Applications

Dr. K. PREMKUMAR Professor Department of Biomedical Science

STEM CELL BIOLOGY AND TISSUE ENGINEERING UNIT - II

Prof. K. Premkumar Dept of Biomedical Science Bharathidasan University

Embryonic Stem Cells (ESCs)

Definition:

- Derived from the inner cell mass of the blastocyst.
- Pluripotent: Capable of differentiating into any cell type within the body

• Isolation:

- Harvested from early-stage embryos (blastocysts) during in vitro fertilization (IVF).
- Cultured in vitro on feeder layers with growth factors like LIF (leukemia inhibitory factor).

Clinical Applications:

- Regenerative therapies (e.g., Parkinson's disease, diabetes).
- Disease modeling and drug discovery.
- Challenges: Ethical concerns and risk of teratoma formation.

Hematopoietic Stem Cells (HSCs)

• Definition:

- Multipotent stem cells capable of forming all types of blood cells (e.g., RBCs, WBCs, platelets).
- Found in bone marrow, peripheral blood, and umbilical cord blood.
- Isolation:
 - Techniques: Density gradient centrifugation, magnetic-activated cell sorting (MACS).
 - Markers: CD34+ antigen for identifying HSCs.
- Clinical Applications:
 - Bone Marrow Transplantation (BMT): Treatment for leukemia, lymphoma, and other blood disorders.
 - **Example:** Use of autologous HSCs in treating aplastic anemia.

Bone Marrow Transplantation (BMT)

Procedure:

- Patient preparation: High-dose chemotherapy or radiation.
- Transplant types: Autologous (self-donated) and allogeneic (donor-derived).

Applications:

٠

- Treats blood cancers (e.g., leukemia) and non-malignant diseases (e.g., sickle cell anemia).
- Immune system reconstitution after high-dose therapies.
- Example: Successful treatment of Fanconi anemia with sibling-donor BMT.

BMT for Autoimmune Diseases

• Mechanism:

- Replaces the faulty immune system with healthy HSCs.
- Resets immune tolerance and reduces autoimmunity

• Examples:

- Systemic lupus erythematosus (SLE): Improved disease control with autologous BMT.
- Multiple sclerosis: Allogeneic HSC transplants leading to symptom remission.

• Challenges:

- Risk of graft-versus-host disease (GVHD) in allogeneic transplants.
- High cost and potential complications.

Transgenic Applications of Stem Cells

• Definition:

- Genetic modification of stem cells to study gene function or produce therapeutic proteins.
- Examples:
 - ESCs engineered to express insulin for diabetes treatment.
 - Use in gene therapy: Correcting genetic mutations in HSCs.

• Challenges:

• Ethical concerns and technical difficulties in precise editing.

Trophoblast Stem Cells

• Definition:

- Derived from the trophectoderm layer of the blastocyst.
- Essential for forming the placenta.

• Isolation:

• Cultured in vitro with fibroblast growth factor (FGF) and activin A.

• Applications:

- Understanding placental development and disorders (e.g., preeclampsia)
- Studying early embryo-maternal interactions.

Epidermal Stem Cells

• Definition:

- Found in the basal layer of the epidermis and hair follicles.
- Unipotent: Regenerate skin and hair under normal conditions.
- Isolation:
 - Biopsy of skin tissues followed by in vitro expansion.

• Applications:

- Wound healing: Cultured epidermal stem cells for burn treatment.
- Regenerative medicine: Development of skin grafts.

• Example:

• Use of epidermal stem cell sheets in chronic ulcer treatment.

Comparison of Stem Cells

- Embryonic vs. Hematopoietic Stem Cells:
 - ESCs: Pluripotent, ethical issues, teratoma risk.
 - HSCs: Multipotent, clinical use in blood disorders, limited differentiation potential.
- Trophoblast vs. Epidermal Stem Cells:
 - Trophoblast: Placenta development.
 - Epidermal: Skin regeneration.

Advances in Stem Cell Technology

- **CRISPR-Cas9:** Precise gene editing in ESCs and HSCs.
- **Organoids:** 3D cultures mimicking organs for studying trophoblast stem cells.
- **Biomaterials:** Scaffolds enhancing epidermal stem cell growth.

Challenges and Ethical Considerations

• ESC Research:

- Destruction of embryos raises ethical concerns.
- Legal restrictions vary globally.
- BMT Risks:
 - Infection, GVHD, and donor compatibility.

• Future Outlook:

• Balancing innovation with ethical practices in stem cell research.

