

BHARATHIDASAN UNIVERSITY

Tiruchirappalli- 620024, Tamil Nadu, India

Programme: M.Sc., Biomedical science

Course Title: Stem Cell Biology & Tissue

Engineering

Course Code: 18BMS48C14

Unit-III

TOPIC: HISTORY OF THE

CANCER STEM CELL

Dr. A. S. VIJAYAKUMAR

Guest lecturer Department of Biomedical Science

HISTORY OF THE CANCER STEM CELL

Overview

- Cancer Stem cells (CSCs) Introduction
- Models of Carcinogenesis
- Origin of CSCs
- Examples of CSCs
- Isolation & Identification of CSCs
- Regulation of CSCs by tumor micro-environment
- EMT/MET and CSCs
- Signal transduction pathways involved in CSCs and their therapeutic targeting
- ☐ Future Perspective

STEM CELLS

STEM CELLS CLASSIFICATION

Introduction

Sub-population of tumor cells with stem cell properties
 □ Self renewal
 □ Lineage differentiation
 □ Isolated from numerous human malignancies using cell surface markers & enzymatic activity of cytoplasmic proteins
 □ Mediate metastasis
 □ Contribute to treatment resistance and relapse
 □ Recent studies − CSCs are regulated by component of tumor microenvironment through complex network of cytokines and growth factors
 □ Future prospects − attractive targets for development of novel therapeutics

Models of Carcinogenesis

Models of carcinogenesis

□ classical "STOCHASTIC" model:
 □ Cancer may arise from any cell
 □ Carcinogenesis evolves through random process of mutation f/b clonal selection
 □ Disease development is driven by Darwinian selection of fittest clones of cancer cells
 □ CSC model:
 □ Process originates in cells that acquire stem cell property of self-renewal
 □ Tumors display a degree of hierarchical organization
 □ Apex of this hierarchy are CSCs
 □ Vogelstein et al – incidence of cancer is directly proportional to number of tissue stem cell divisions

FIGURE 2.1 Different models of tumorigenesis.

Origin of CSCs

CSCs – unifying concept in multiple cancers

- First identified in Human Leukemia in 1997 by John Dick et al
- A small fraction of cell were capable of regenerating leukemia in NOD/SCID mice
- Specific phenotype CD34+/CD38- (resembling normal hematopoietic stem cell)
- Subsequently, CSC were identified in breast, brain, prostate, colon, pancreas, liver, lung, melanoma and head & neck malignancies

Origin of CSCs

- Expression of Wnt target Lgr5 intestinal stem cells
 - Schepers et al. demonstrated that Lgr5+ cells : ability of forming adenoma in mice
- Driessens et al similar genetic lineage tracing studies to mark skin papilloma cells which self renewed in mouse models
- Patients with glioblastoma median survival of 1 yr
 - Mainly because of therapeutic resistance and recurrence after resection
 - Chen and colleagues: genetically engineered mouse model repopulating cells were nestin + CSCs located in subventricular zone
- These studies strong support to CSC model of tumorigenesis

Examples of CSCs

- □ Uchida et al CD113+/CD34-/CD45- : expression of cell surface Ag PROMININ -1
 - Cells were able to form Brain tumors in NOD-SCID mice and neurospheres in vitro cultures
- EpCam+/CD44+/CD24-/Lin- : breast cancer in NOD-SCID mice
- CD44+/α2β1^{hi} /CD133+ : prostate CSCs
- Sca1+/CD34+/CD45-/Pecam-: pulmonary CSCs
- Ricci and O'Brien et al isolated CD133+ human colon CA cells and injected S/C in NOD-SCID mice generated tumor in them, CD133- cells failed to do so
- Pancreatic carcinoma CD44+/CD24+/ESA+ phenotype 100 fold more tumorigenic
- Human <u>Liver</u> CSCs CD133+ demonstrated self renewal potential, colony forming ability and tumor formation in mouse xenografts

Tumor initiating cells

Cancer stem cells

CSC marker expression:

- ☐ First solid tumor CSC Breast carcinoma
- Phenotype: CD44+/CD24-
- CD 113 brain and lung cancer
- ALDH another CSC marker
 - Involved in oxidation of retinol to retinoic acid
 - Readily determined by commercially available Aldefluor assay
 - ■Useful marker in CA breast, colon, ovary, head&neck, and recently melanoma

Table 1.1 Verified Cancer Stem Cell Populations and Their Corresponding Markers in Various Cancers

Cancer Class	Markers (eg)
Leukemia/Lymphoma	CD34+, CD47+, CD96+, CD25+, CCL-1+ CD38-
Head and neck squamous cell carcinoma	CD44+, BMI 1+, CD24+, CD133+
Glioblastoma multiforme	CD133*, CD49f*, JAM-A, HER2*, EGFRVIII*
Lung	CD44* CD133*
Breast	ESA+CD44+/CD24-Aow Lin-, ALDH1+, CD133+, CD61+
Ovarian	CD44+, CD117+
Pancreas	CD44*, CD24, ESA*
Gastric	CD44+, CD133+, ABCB1+, ABCG2+
Colorectal	CD44+, CD133+, CD166+, CD24+
Prostate	CD44*, CD133*, ALDH*
Bladder	CD44+, CD90+, CD49f+
Melanoma	CD20*, CD271*, ABCB5*

Dye exclusion assays:

- Ability of stem cells to efflux lipophilic dyes, such as Rhodamine
- High expression ATP-binding cassette transporter proteins ABCG2/BCRP1
- Flow cytometry analysis, cells that do not retain dye are observed as a side population
- This side population cells are enriched with tumor stem cells capable of generating heterogenous tumor cell populations
- Cellular toxicity of dye limited role in functional tests

Label retention:

- Another dye based in vitro test
- Cell membrane assay using fluorescent PKH dye
- Dye consists of a fluorophore that binds to the cell membrane lipid bilayer
- On cell division dye gets equally distributed into daughter cells
- Stem cells undergo asymmetric cell renewal process generating stem cells and daughter cell
- Generated stem cells are quiescent and thus retains the dye longer
- Recently CSCs are reported to demonstrate auto-fluorescence in presence of riboflavin
- These cells had increased chemo-resistance, highly metastatic, long term in vivo tumorigenicity

Sphere formation assays:

- Another in vitro assay
- Based on a property shared by both normal and malignant stem cells: "survival when cultured in suspension and generation of spheroids at clonal density"
- These spheres can be serially passaged and display stem cell properties with each passage
- Possible to combine different in vitro assays like:
 - addition of PKH dye during sphere formation

In vivo serial dilution CSC assays:

- Limitation of in vitro assays:
 - expression of CSC markers can be variable
 - influenced by tumor micro-environment
 - sphere formation assay not correlate with tumor forming capacity
- Gold standard: initiation of tumor when injected into SCID mice
- immunosuppressed mouse models also have limitations
- immune system play an important role in CSC regulation

Regulation of CSCs population

Regulation of CSCs by tumor microenvironment

- Tumors are "ORGAN-like" structures different cell types interact to drive and promote growth and metastases
- cells of tumor micro-environment include:
 - MSCs (mesenchymal stem cells)
 - Tissue fibroblasts
 - Endothelial cells
 - Immuno-modulatory cells T cells and Macrophages
- ☐ Interact with tumor CSCs via growth factors and cytokines
- □Inflammatory cytokines IL-1, IL-6, IL-8 regulate CSCs during carcinogenesis

Fig. 16.5 Cancer stem cells and the tumor microenvironment (TME). TME-associated important cell types and their spatial localizations are shown

Regulation of CSCs by tumor microenvironment

- Epigenetic and genetic changes during carcinogenesis modulate these regulatory signals
- commonly dysregulated signals include:
 - NOTCH
 - □HH
 - ■Wnt
 - PI-3k
 - ■NFκB
 - ■Jak/STAT pathways

Regulation of CSCs by tumor micro-

environment

Many of these pathways resemble those in normal wound healing – including cytokine loops regulated by transcription factor NFκB

- activation of fibroblasts and myofibroblasts – Gabbiani and Majno – similarities in wound healing and tumorigenesis
- Malignant tumors are "wounds that never heal"

Regulation of CSCs - fibroblasts

- Growth factors: TGF-β involved in epigenetic changes activation of fibroblasts
- Cytokines: SDF-1 (CXCL-12) produced by breast CA associated fibroblasts promote tumor cell proliferation
- High SDF-1 expression in serum: indicator of poor survival
- Hepatocyte growth factor (HGF) produced by mammary stromal cells induces stem cell activation
- ■HGF co-stimulates Wnt signal during colon carcinogenesis
- CSCs use oxidative stress drive stromal fibroblasts to activate various signaling pathways
- ■Estrogen regulates breast CSC population paracrine mechanism involving FGF9

Regulation of CSCs - T cells and macrophage

- Exert both stimulatory and inhibitory effects on CSCs
- Recent studies in leukemia & lymphoma tumor cells express Ag CD47+
- This serves as "don't eat me" signal to tumor macrophages
- Also they express "Calreticulin": serve as "eat me" signals
- Administration of CD47 blocking Ab induced tumor macrophage induced phagocytosis
- CD47 widely expressed in several solid tumor CSCs.
- Targeting this molecule suppresses tumor growth and metastases in mouse models

Regulation of CSCs - endothelial cells

- Directly interact with tumor cells as well as role in blood vessel formation
- Judah Folkmann proposed 40 yrs back angiogenesis tumor growth and mets
- Bone marrow derived endothelial progenitor cells attracted to tumors differentiate into mature endothelial cells and capillaries
- Carry oxygen and nutrients to growing tumors
- CSCs vasculogenic mimicry stem cells transdifferentiate into endothelial like cells
- VEGF primary mediator of this process
- □ Targets: Bevacizumab, multikinase VEGF i: Sorafenib and Sunitinib FDA approved

Role of cytokines in CSCs renewal

- Link between inflammation and cancer Virchow 1864
- He observed inflammatory cells infiltrated tumor stroma
- also examples of Ulcerative colitis, Hepatitis C and chronic pancreatitis in respective cancers
- chronic inflammation mediated by IL-1β, IL-6, and IL-8
- mesenchymal cells, macrophages and immune cells secrete both IL6 and IL8
- elevated levels in advanced breast cancer poor outcome
- ☐ IL-6:
 - □Direct regulator of BCSCs self renewal mediated by IL-6 receptor/GP-130 complex via activation of STAT3
 - ■Sethi et al. IL6 mediated Jagged1/NOTCH signaling in breast CA bone metastases

Role of cytokines in CSCs renewal

IL-8:
 IL-8 receptor CXCR1 − highly expressed in BCSCs
 CXCR1 inhibitor: REPARAXIN − reduced CSC in breast CA xenografts
 NF-KB:
 Induces transcription of IL-6 and IL-8
 Positive feedback loop maintains chronic inflammatory state in tumor cells
 Involves microRNA let7 and Lin 28 − factors involved in embryonic stem cell self renewal
 This feedback loop is maintained by IL-6 through activation of STAT-3 − which activates NF-KB
 Her-2 neu mouse model of mammary carcinogenesis − suppression of NF-KB reduced stem cell population

EMT/MET and CSCs

EMT/MET and CSCs

- EMT physiological process during embryogenesis where epithelial cells acquire mesenchymal properties
- Characterised by loss of CAMs (E- Cadherin) and acquisition of invasive properties
- In cancer EMT associated with process of metastasis where primary tumor cells acquire mesenchymal phenotype and invade cells
- EMT is regulated by microenvironmental factors
 - Tissue hypoxia
 - □ TGF- β
 - Transcription factors like: TWIST1, TWIST2, SNAI1, SNAI2, ZEB1, and ZEB2
 - Other inflammatory cytokines
- ☐Several studies suggest EMT generates CSC like cells

EMT/MET and CSCs

- Overexpression of SNAI1 or TWIST1 induce EMT in MCF10A and immortalized human mammary epithelial cells
- Increased expression of stem cell marker CD44 and a decrease in CD24 expression (CD44+/CD24-) suggests induction of CSC-like phenotype
- TWIST1 increased ability of breast cancer cells to form mammospheres and secondary tumors
- basal subtype breast CA, particularly claudin-low
 - possess an EMT-like gene expression signature
 - high proportion of CD44+/24- cells
 - highly aggressive behavior with greater propensity to develop metastasis

Role of EMT in breast cancer

- CSC possesses alternative phenotypes
 - one involved in tumor invasion and metastasis
 - another maintains the bulk of the tumor
- recent study comparing ALDH+ and CD44+/24- BCSCs isolated from different subtypes of breast cancer
 - ALDH+ CSCs interior of the tumors self-renewed and proliferated at a higher rate, E-cadherin +
 - CD44+/24- CSCs mesenchymal, located on the tumor margins, and were more quiescent, Vimentin +

More potential to invade blood vessels when triggered by stromal factors

The plasticity of BCSCs from a quiescent mesenchymal state to a proliferative epithelial-like state is critical for formation of tumor metastases

FIGURE 5.1 Breast cancer stem cell (BCSC) differentiation and interconversion.

Fig. 5.1 Different cell surface breast cancer stem cell (BCSC) markers

Signal transduction pathways and CSCs

- HEDGEHOG
- NOTCH
- WNT

Hedgehog signaling:

- Hedgehog family of proteins control cell growth, survival and stem cell maintenance
- Three ligands: Sonic (SHH), Indian (IHH), desert hedgehog (DHH)
- Aberrant activation of HH signaling linked to BCC, medulloblastoma, RMS, glioma and others
- HH proteins bind to PTCH receptor upregulation of GLI1-3 transcription factors
- Normal mammary stem cells demonstrate PTCH1, GLI1 and GLI2
- High expression of SHH, PTCH1, and GLI1 in invasive breast cancer suggest a role of this pathway
- Linked to early bone metastasis (secretion of HH ligand by tumor cells activates transcription of Osteopontin by bone osteoclasts)

Hedgehog signaling:

- Commonly used antagonist of HH signalling: plant based alkaloid CYCLOPAMINE
- Downregulates GLI1
- Other antagonists: SANTs 1-4; KAAD-cyclopamine; Compound 5 and Z; and Cur-61414
- Recent: 5E1 monoclonal Ab targeting SHH in small cell lung carcinoma
- □ GDC 0449 (vismodegib) : first HH pathway inhibitor FDA approved experimental clinical trials

NOTCH signaling:

- Regulation of cell fate determination, proliferation and differentiation
- Ligands: Delta like (DLL-1,3, and 4), JAG1 and2, NOTCH1-4
- Oncogenic role of NOTCH 1 first described in T-ALL
- Overexpression of NOTCH 4 poorly diff mammary and salivary adenoCA
- CD44+/24- breast CSCs display NOTCH pathway activation
- NOTCH 4 most important regulator of BCSCs
- Activation of NOTCH early event in breast cancer, observed in DCIS
- Co-expression of JAG1 and NOTCH1 poor overall survival

NOTCH signaling:

- variety of agents inhibiting NOTCH signaling early phase clinical trials
- y secretase inhibitors block NOTCH processing (begacestat)
- Antibodies against specific NOTCH receptors (ARP39295_P050)
- Antibodies against NOTCH ligand DLL4 (ab183532)

Wnt signalling:

- Wnt/β-catenin/TCF pathway: maintenance of adult tissue homeostasis, cell proliferation, differentiation, migration, apoptosis
- Also regulates self renewal and maintenance of embryonic and tissue specific stem cells
- Canonical Wnt pathway mutation of APC activation of β-catenin/TCF complex upregulation of c-myc and Cyclin D1 majority of sporadic colorectal cancer
- Germline APC mutation FAP
- Other cancers involving β-catenin mutation: melanoma, thyroid and ovarian
- Epigenetic silencing through methylation of Wnt antagonist gene (SFRP) colon, breast, prostate, lung and other cancers

Wnt signaling:

- Wnt/ β-catenin signaling EMT regulation (downregulation of E-cadherin and upregulation of SNAIL and TWIST)
- Wnt signaling stem cell expansion induced by Hif 1-α
- Drugs:
 - NSAIDS Sulindac and Celecoxib (phase II trials)
 - antibodies targeting Wnt signaling
 - Wnt3A neutralizing Ab reduces proliferation and enhances apoptosis in prostate cancer
 - Monoclonal Ab OMP54F28: early phase clinical trials

Clinical significance of CSC and future perspective

- Substantial evidence that CSC plays role in:
 - ■Treatment resistance to CT and RT*
 - ■Tumor propagation
 - Distant metastasis
- *Mechanisms:
 - ■Alteration in cell cycle kinetics
 - Increased expression of anti-apoptotic proteins
 - ☐Increase in cellular transporters
 - Increased efficacy in DNA repair

Future perspective

Clinical significance of CSC and future perspective

- Currently, tumor shrinkage is accessed by RECIST criteria
- However, it poorly correlates with patient survival
- Tumor shrinkage is measure of effects of treatment on tumor bulk, but CSC constitute a minority of tumor bulk
- Current approach for CSC drug development :
 - Assessing toxicity in Phase I trials
 - Combining CSC targeting drugs with traditional agents that targets bulk population
- Preliminary data suggest that these agents are well tolerated at doses that reduce CSC number in serial biopsies
- CSC targeted therapies should have greatest effect in adjuvant setting (target potential of CSC to self renew into clinically significant disease from micrometastasis)

Clinical significance of CSC and future perspective

- Trastuzumab targets Her-2 : prevent recurrence when utilised in adjuvant setting.
- Development of cancer immunotherapies immune checkpoint blockers
- CSCs are particularly competent in evading immune surveillance high expression of PDL1 or secretion of immunosuppressive TGF-β
- CSC based vaccines and peptides under development
- Worldwide over 70 clinical trials utilising novel CSC targeting agents most in their early stages
- Comprehensive RCTs will be required to conclusively determine whether targeting CSCs improves patient outcome

Novel CSC Targets

Figure 2 Cancer stem cell-targeted drugs and their cellular targets currently being evaluated in early phase clinical trials or FDA approved for other purposes.

Targeting CSCs by Nano enabled drug delivery

Nanobots: self driven, submicron dimension biodegradable devices, deliver cargo at target sites
 □ PEDOT/Zn micromotor
 □ DNA origami based nanobots
 □ Nano-swimmers – swim in blood stream to deliver the targets
 □ Nanoneedles / Nanoclusters / Nanobubbles:
 □ facilitate drug delivery directly into cell cytoplasm
 □ nanoclusters: 10nm size, self assembly of polymeric substance cross linked with Au/Ag/magnetic nanoparticles
 □ nanobubbles: spherical gas filled structures stabilised using polymeric/lipid shells
 □ Dendrimers
 □ Graphene and Carbon nanotubes

Nano-diamonds / exosomes as drug cargo

Take home message

- Despite considerable progress in molecular underpinning of cancer, this understanding is yet to be translated into significant improvement in patient survival
- Substantial evidence that many cancer are hierarchically organised and driven by cells having stem cell properties
- □Ability to self renew and differentiate, forming the cells that constitute the tumor bulk
- ■Tumor initiating cells or CSC may mediate tumor metastasis and contribute to treatment resistance
- Additional therapies targeting CSC population may be required to limit metastasis and significantly improve patient survival
- ■Preclinical models targeting regulatory pathways IL-6. IL-8 and NFKB can effectively reduce CSC population in breast cancer

References

- The Molecular Basis of Cancer, 4th edition (John Mendelsohn, Peter M. Howley)
- Holland-Frei Cancer Medicine, 9th edition (Robert C. Bast Jr., Carlo M. Croce)
- Abeloffs Clinical Oncology, 6th edition (John E. Niederhuber, James O. Armitage)
- Cancer Stem Cells: New Horizons in Cancer Therapies, Springer
- Cancer Stem Cells: Targeting the Roots of Cancer, Seeds of Metastasis, and Sources of Therapy Resistance, Huiping Liu
- Cancer Stem Cells—Origins and Biomarkers: Perspectives for Targeted Personalized Therapies,
 Walcher et al
- Cancer Stem Cell (CSC) Inhibitors in Oncology: A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives, Prashant S. Kharkar

THANKS