

Program: M.Sc., Biomedical Science

Course Title: Neurobiology

Axonal transport

Prof. Narkunaraja Shanmugam Dept. of Biomedical Science

Neurons have proximal-distal (=basal-apical) polarity

Extruded axoplasm assays - Cytosol is squeezed from the axon with a roller onto a glass coverslip.

Addition of ATP shows movement by videomicroscopy

Vesicle movement in this system is about 1-2um/s similar to fast axonal transport.

Intracellular transport requires microtubules

Stain with an anti-gamma tubulin antibody (red). Gamma-tubulin at initiates synthesis at one end (-) (green)

Molecular structure of dyneins and kinesins

Dyneins - composed of 2-3 heavy chains with a total Mr of 1,000kD

- interact with microtubules indirectly through microtubule-

binding proteins

Kinesin

Dimer of a heavy chain complexed to a light chain

Mr= 380kD

Three domains:
1) Large globular head
Binds microtubules and ATP
2) Stalk
3) Small globular head
Binds to vesicles

To date 12 different family Members have been identified Structure of Kinesin

How does Kinesin catalyze transport?

- Beads coated with kinesin binds to microtubules and move along
- Dynein promotes movement in the opposite direction

How does Kinesin catalyze transport?

How to build directionality and specificity?

- Multiple motor proteins can bind to a given cargo
- Each kinesin/dynein transports a specific cargo