

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024, Tamil Nadu, India Programme: M.Sc., Biomedical Science

Course Code: 18BMS59C17 Course Title: Immune & Molecular Diagnostics

Unit-III

Measurements of specific proteins in serum, CSF & Urine

Dr. R. POORNIMA Guest Faculty Department of Biomedical Science

Unit III:

Measurements of specific proteins in serum, CSF & Urine- Immunoglobulins (Igs), paraproteins & cryoglobulins, investigation of complement disorders- assays for individual components (EIA, RIA), Functional assay for complement pathways-AH50, C50- detection of complement breakdown products- C3nephritic factor, Functional assays for immune complexes. Clinical significance of C- Reactive proteins- cryoglobulins in patient specimens- test methods for detection. Tests for allergy- Total serum IgE, allergen specific IgE- serology based methods-in vivo-skin prick test, in- vitro- RAST (1st, 2nd & 3rd generation methods)- cell based methods-Allergan induced mediator release assay- histamine release, LTC4 release (Cellular antigen Stimulation Test- CAST), Flow cytometric basophil activation assay (Flow Assay Stimulation Test- FAST)- CD63 CD203c, test for hypersensitivity IIIprecipitating antibodies.

PRESENTATION: 2

C- REACTIVE PROTEIN

C- REACTIVE PROTEIN

- Synthesize primarily in hepatocytes
- CRP Gene- Chromosome 1, Short arm
- Few cytokines especially, IL-6 and IL-1 regulate CRP at transcritional level
- Normal range: Less than 10mg/L
- It has highest affinity for,

Phosphocholine on bacteria

Mixture of sphingomyeline and phosphatidylcholine in eukaryotic membranes

C- REACTIVE PROTEIN

- CRP can recognize self ligands,
 - Plasma lipoproteins
 - Damaged cell membrane
 - Several phospholipids
 - Small nuclear ribonucleoprotein components
 - Apoptotic Cells
- CRP Also bind to some extrinsic ligands,
 - Phospholipid
 - Capsular/cell body components of bacteria, fungi and parasite and Plant particles

Methods for the detection of CRP

- ELISA
- Immunoturbidimetry
- Rapid immunodiffusion and
- Visual Agglutination

CLINICAL IMPORTANCE CRP

• Elevated CRP levels:

Osteoarthritis

Predictive of coronary events (esp. in stable angina) Proinflammatory or prothrombotic effects

• Mild elevation of CRP levels:

SLE Scleroderma

Sjogren syndrome

Dermatomyositis/Polymyositis

CLINICAL IMPORTANCE CRP

Normalization of CRP levels:

• Helpful tool in determining the response to Antibiotic therapy and duration of treatment

Transplant cases,

- Elevated levels were seen in majority of kidney or heart transplant
- Highly elevated in GVHD
- Changes in levels are not organ specific, like other inflammatory conditions

CLINICAL IMPORTANCE CRP

• Cerebral vein or sinus thrombosis:

An increase CRP is associated with a poorer short- term prognosis

• Giant cell arteritis:

Thrombocytosis with platelet counts >400,000/ μ L and CRP levels >2.45 mg/dL have been found to be to the strongest laboratory predictors of a positive temporal artery biopsy.

• Pancreatitis:

Level peaks 3 days after onset of pain

At 48 hours, sensitivity = 65-100%, PPV = 37-77%.

Level of 150 mg/L distinguishes mild from severe disease.

CLINICAL SIGNIFICANCE OF CRYOGLOBULINS

INTRODUCTION

- The term cryoglobulin' was coined by Lerner and Watson in 1947.
- Precipitation of cryoglobulins is dependent on temperature, pH, cryoglobulin concentration, and weak noncovalent factors.
- Cryoglobulins immunoglobulins that precipitate in vitro at temperatures < 37°C and redissolve after rewarming.
- Cryoglobulinemia refers to the presence of cryoglobulins in serum.
- Cryoglobulinemic disease or cryoglobulinemic vasculitis used to describe patients with symptoms related to the presence of cryoglobulins.

TYPE I CRYOGLOBULINEMIA

- With increase in amount of B lymphocytes the production of antibodies increases (monoclonal antibodies)– IgM and IgG
- Ig's are proteins, with increase in Ig's total protein count level increase.
- With increase in serum protein concentration –Erythrocyte sedimentation rate increase
- With increase in protein level blood viscosity increases
- The higher is the viscosity the higher is the risk of thrombosis

- Thrombosis in digits Raynaud phenomenon
- Thrombosis in cerebral circulation blurry vision
- Thrombosis in digits distal ulcers
- Thrombosis in peripheral arteries- peripheral neuropathy

TYPE II CRYOGLOBULINEMIA

DIAGNOSIS OF CRYOGLOBULINEMIA

BLOOD TEST

- Any haemolysis or lipaemia should be noted since this may interfere with visual interpretation of cryoprecipitation.
- In patients who are receiving heparin, fibronectin-heparin complexes may lead to false-positive cryoprecipitation.
- Recommend collecting an EDTA sample at the same time as the serum routinely to exclude cryofibrinogenaemia-as cryoglobulins and cryofibrinogens can lead to similar clinical symptoms and signs.
- Two aliquots of separated serum should be incubated for at least three days, one at 4°C and the other at 37°C-and preferably for seven days-and visually inspected every day.
- Type I cryoglobulins tend to precipitate within hours and become apparent by the next day.
- Mixed cryoglobulins at low concentrations may take several days to precipitate.
- A cryoprecipitate may be seen as gelatinous, flocculent, crystalline material or sometimes as a dusty hue.

RE DISSOLUTION

- Re-dissolution of the cryoglobulin precipitate by re-warming to 37°C is very important.
- If the precipitate is not resoluble within a few minutes then the result is negative— no further analysis is required.

SERUM PROTEIN ELECTROPHERESIS

1. Sample Collection

- 2. Centrifugation
- **3.Sample Preparation**
- 4. Gel Preparation
- **5.** Loading Samples
 - 1. Load the prepared serum samples into wells on the gel.

6. Electrophoresis

- 1. Submerge the gel in an electrophoresis buffer.
- 2. Apply an electric current to separate proteins based on their charge and size.

7. Staining

1. After electrophoresis, stain the gel with a protein-specific stain (e.g., Coomassie Blue) to visualize protein bands.

8. Destaining

1. Rinse excess stain from the gel with a destaining solution.

9. Drying

10. Interpretation

- 1.Examine the gel to identify protein bands.
- 2. Measure the distance traveled by each protein band from the origin.

Reporting

1.Generate a report summarizing the protein fractions (e.g., albumin, alpha-1, alpha-2, beta, and gamma globulins) and any abnormalities detected.

SERUM PROTEIN ELECTROPHERESIS

Figure 3: Protein categories in a normal serum electrophoresis trace (left) and abnormal monoclonal protein (right) seen in a Myeloma patient

IMMUNO FIXATION

Immuno Fixation:

- 1. After electrophoresis, cut the gel into strips or segments for further analysis.
- 2. Incubate each gel strip in separate trays with specific antisera:
 - 1. One tray with anti-IgG antiserum.
 - 2. One tray with anti-IgM antiserum.
 - 3. One tray with anti-IgA antiserum.
- 3. Incubate the gel strips at 4°C or room temperature for an appropriate duration (typically 1-2 hours to overnight) to allow antigen-antibody reactions to occur.

• Washing and Staining:

- 1. Wash the gel strips to remove excess antisera.
- 2. Stain the gel strips with an appropriate staining solution (e.g., Coomassie Brilliant Blue or Ponceau S stain) to visualize the protein bands.

• Interpretation:

1. Examine the stained gel strips for the presence of bands or precipitation lines indicating cryoglobulins and their respective immunoglobulin classes (IgG, IgM, IgA)

Test for allergy- total serum Ig E, Allergen specific IgE

- Allergy testing is crucial for identifying specific allergens responsible for hypersensitivity reactions. Various tests are available to detect the presence of immunoglobulin E (IgE) antibodies, which are central to allergic responses.
- These tests include Total Serum IgE, Allergen-Specific IgE (via serology and cell-based methods), and Skin Prick Test. In-vitro methods like RAST (Radioallergosorbent Test) and its subsequent generations have also evolved to improve accuracy and specificity.

1. Total Serum IgE

a. Overview

• Total serum IgE measures the overall level of IgE in the blood. Elevated IgE levels are associated with allergic diseases, parasitic infections, and some immunodeficiencies.

b. Clinical Indications

- Helps in the diagnosis of atopic diseases like asthma, allergic rhinitis, and eczema.
- Used in conjunction with other tests to confirm allergies or monitor allergic conditions.

c. Limitations

- Total IgE levels can be elevated in non-allergic conditions.
- It does not specify the allergen responsible for the allergic response.

2. Allergen-Specific IgE Testing

a. Overview

• Allergen-specific IgE tests identify the presence of IgE antibodies against specific allergens. These tests can be performed in vivo (e.g., skin prick test) or in vitro (e.g., serology-based methods).

b. In Vivo: Skin Prick Test (SPT)

i. Principle

- A small amount of allergen is introduced into the skin, usually on the forearm or back.
- If the patient is sensitized to the allergen, a localized allergic reaction (wheal and flare) occurs within 15-20 minutes.

ii. Procedure

- **1. Preparation**: The skin is cleaned, and allergens are applied using a small lancet.
- **2. Application**: Positive (histamine) and negative (saline) controls are included.
- **3. Observation**: The size of the wheal is measured to determine the presence of an allergic response.

iii. Advantages

- Quick and relatively inexpensive.
- Provides immediate results.

iv. Limitations

- Risk of systemic reactions, although rare.
- Antihistamines and certain medications can interfere with results.

c. In Vitro: Serology-Based Methods

i. Radioallergosorbent Test (RAST)

- RAST was one of the first methods used to detect allergen-specific IgE in the blood.
- 1. First-Generation RAST
- Used radioactively labeled anti-IgE to detect IgE bound to allergens.
- Limited by low sensitivity and safety concerns due to the use of radioactive materials.

- 2. Second-Generation RAST
- Improved sensitivity by using enzyme-linked detection systems instead of radioactive labels.
- Utilized enzyme-linked immunosorbent assays (ELISA) for detection.
- 3. Third-Generation RAST (ImmunoCAP)
- Further improvements with the use of fluorescent markers (e.g., ImmunoCAP).
- Enhanced sensitivity and specificity.
- Uses a solid-phase immunoassay with allergen-coated cellulose sponges to capture IgE.

- ii. Procedure for In Vitro Tests
- **1.Sample Collection**: Blood is drawn from the patient.
- **2.Incubation**: Serum is incubated with allergens bound to a solid phase.
- **3.Detection**: IgE bound to allergens is detected using labeled anti-IgE antibodies.
- **4.Quantification**: The amount of allergen-specific IgE is quantified and reported in kU/L.

iii. Advantages

- Safe for patients with severe allergies, as there is no risk of an immediate allergic reaction.
- Not influenced by antihistamines or other medications.

iv. Limitations

- More expensive and time-consuming compared to in vivo tests.
- Results can be influenced by technical factors, requiring wellstandardized procedures.

3. Cell-Based Methods

a. Basophil Activation Test (BAT)

- This test measures the activation of basophils (a type of white blood cell) in response to allergens.
- i. Principle
- Basophils express surface markers (e.g., CD63) upon activation by allergens.
- Flow cytometry is used to detect the expression of these markers, indicating an allergic response.

ii. Procedure

- **1.Sample Collection**: Blood is collected from the patient.
- **2.Stimulation**: Basophils are exposed to allergens in vitro.
- **3.Detection**: Activated basophils are identified using flow cytometry, based on the expression of activation markers.

iii. Advantages

- Provides functional information about basophil reactivity.
- Useful for diagnosing allergies when conventional tests are inconclusive.

iv. Limitations

- Requires specialized equipment and technical expertise.
- Not widely available and more costly.

4. Comparison of Allergy Testing Methods

Test	Туре	Advantages	Limitations
Total Serum IgE	In vitro (serology)	Simple, quick, indicates atopy	Non-specific, not allergen-specific
Skin Prick Test (SPT)	In vivo	Quick, cost-effective	Risk of local/systemic reactions
RAST (1st Gen)	In vitro (serology)	Safe, detects allergen- specific IgE	Low sensitivity, uses radioactivity
RAST (2nd Gen)	In vitro (serology)	Improved sensitivity	More expensive than SPT
ImmunoCAP (3rd Gen)	In vitro (serology)	High sensitivity, automated	Costly, requires specialized lab
Basophil Activation Test	In vitro (cell-based)	Functional test, useful in complex cases	Expensive, requires flow cytometry

ACKNOWLEDGEMENT

- The presentation is being used for educational and non-commercial purposes.
- Thanks are due to all the original contributors and entities whose pictures were used to create this presentation.