

BHARATHIDASAN UNIVERSITY Tiruchirappalli- 620024, Tamil Nadu, India Programme: M.Sc., Biomedical Science

Course Code: 18BMS59C17 Course Title: Immune & Molecular Diagnostics

Unit-I

Basic Immunological Methods

Dr. R. POORNIMA Guest Faculty Department of Biomedical Science

Unit I:

Basic Immunological Methods – Preparation of antigens, rising of antisera, routes of administration, doses for administration, purification of antibodiesmethodology – IgG & IgA. Monoclonal antisera raising & Hybridoma technology. Types of conjugated antibodies, types of substrates and color detectors used in immunoassays. Immunofluorescence, Flow cytometry - clinical focus – Leukemia typing (immunophenotyping), ELISA and its variants- Principle and application, Surface Plasmon Resonance- principle and application-

PRESENTATION: 2

Types of Antibodies, Types of Substrates, and Color Detectors Used in Immunoassays

- Immunoassays are biochemical tests that measure the presence or concentration of a macromolecule or a small molecule in a solution through the use of an antibody or an antigen.
- These assays are widely used in diagnostics, research, and various industrial applications.

A conjugated antibody is a polyclonal or monoclonal antibody that has a molecule attached which can be used to create a detectable signal.
Detection can be visualized by color-generation, fluorescence, or other signals.

Types of Antibodies

1.Monoclonal Antibodies (mAbs)

1. Source: Produced by identical immune cells derived from a single parent cell (hybridoma technology).

- 2. Specificity: Highly specific to a single epitope on an antigen.
- 3. Applications: Therapeutics, diagnostics, research.

2.Polyclonal Antibodies (pAbs)

- **1. Source**: Produced by different B cell clones in an animal; typically collected from serum.
- **2. Specificity**: Recognize multiple epitopes on the same antigen.
- 3. Applications: Detection assays, immunoprecipitation, Western blotting.

3. Recombinant Antibodies

- **1. Source**: Generated using recombinant DNA technology.
- **2. Specificity**: Can be engineered to have specific binding properties.
- 3. Applications: Therapeutics, diagnostics, research.

4. Chimeric and Humanized Antibodies

- **1. Source**: Genetically engineered antibodies combining murine and human antibody sequences.
- 2. Specificity: Retain the specificity of the original murine antibody while reducing immunogenicity.
- 3. Applications: Therapeutics (e.g., cancer, autoimmune diseases).

5. Fragment Antibodies

- **1. Types**: Fab (antigen-binding fragment), F(ab')2, scFv (single-chain variable fragment).
- **2. Specificity**: Retain the antigen-binding sites of the full antibody.
- 3. Applications: Research, therapeutics, diagnostics.

Types of Substrates Used in Immunoassays

1.Enzyme-Linked Immunosorbent Assay (ELISA) Substrates a. TMB (3,3',5,5'-Tetramethylbenzidine)

Colour: Produces a blue colour (turns yellow after acid stop solution is added).
 Detection: Absorbance at 450 nm (after stop solution).

b. ABTS (2,2'-Azinobis [3-ethylbenzothiazoline-6-sulfonic acid])

Colour: Produces a green colour.
 Detection: Absorbance at 405 nm.

c. OPD (o-Phenylenediamine dihydrochloride)

Colour: Produces a yellow-orange colour.
 Detection: Absorbance at 492 nm.

2. Chemiluminescent Substrates

1. Luminol

1.Detection: Produces light which is detectable by a luminometer.

2. Enhanced Chemiluminescent (ECL) Substrates

1.Detection: Produces enhanced light output for greater sensitivity.

3. Fluorescent Substrates

1. Fluorescein

1.Detection: Green fluorescence (excitation at ~494 nm, emission at ~521 nm).

2. Rhodamine

1.Detection: Red fluorescence (excitation at ~540 nm, emission at ~570 nm).

Color Detectors Used in Immunoassays

1.<u>Spectrophotometers</u>

- **1. Function**: Measure the absorbance of colored products formed in ELISA and other assays.
- **2. Applications**: Quantitative measurement of color intensity corresponding to antigen or antibody concentration.

2.Plate Readers

- 1. Function: Automated spectrophotometers designed to read multi-well plates.
- 2. Applications: High-throughput screening, ELISA, other colorimetric assays.

3.Luminometers

- **1. Function**: Measure light emission from chemiluminescent reactions.
- 2. Applications: Chemiluminescent ELISA, Western blotting, nucleic acid detection.

4. Fluorescence Microplate Readers

- **1. Function**: Measure fluorescence intensity from fluorescently labeled antibodies or substrates.
- 2. Applications: Fluorescence-based immunoassays, cell-based assays, kinetic studies.

In Vivo Methods: Skin Test

- Skin tests are in vivo diagnostic methods used to evaluate the presence of specific allergens, infectious agents, or immune responses in a person.
- These tests are typically used in allergy testing, tuberculosis screening, and evaluating immune function.

Types of Skin Tests

1. Allergy Skin Tests

a. Skin Prick Test (SPT)

•**Purpose**: To identify allergens causing allergic reactions such as hay fever, asthma, or dermatitis.

•Procedure:

- The forearm or back is cleaned with alcohol.
- Drops of allergen extracts are placed on the skin.
- A small, sterile lancet is used to prick the skin through each drop.
- The skin is observed for a reaction (e.g., redness, swelling) after 15-20 minutes.

•Interpretation: A positive reaction (wheal (swell) and flare (red)) indicates sensitivity to the specific allergen.

b) Intradermal Test

- **Purpose**: Used when the skin prick test is negative, but an allergy is still suspected.
- Procedure:
 - A small amount of allergen extract is injected just under the skin.
 - The injection site is observed for a reaction after 15-20 minutes.
- Interpretation: A positive reaction indicates an allergy to the tested substance.

c) Patch Test

- **Purpose**: To identify allergens causing contact dermatitis (skin rash caused by contacting some substance).
- Procedure:
 - Small amounts of allergens are applied to patches.
 - The patches are placed on the skin, usually the back.
 - The patches are removed after 48 hours, and the skin is examined for reactions at 48 and 72 hours.
- Interpretation: A positive reaction (red, raised area) indicates contact allergy.

2. Tuberculosis Skin Test (Mantoux Test or PPD Test)

•Purpose: To screen for tuberculosis infection.

•Procedure:

- A small amount (0.1 mL) of purified protein derivative (PPD) is injected intradermally into the forearm.
- The injection site is marked and observed after 48-72 hours.

•Interpretation:

- **Induration Measurement**: The diameter of induration (raised, hardened area) is measured in millimeters.
- **Positive Test**: The criteria for a positive test depend on risk factors:
 - ≥5 mm: HIV-positive individuals, recent contacts of TB cases, persons with fibrotic changes on chest radiograph consistent with prior TB, organ transplant recipients, and other immunosuppressed patients.
 - ≥10 mm: Recent immigrants from high-prevalence countries, injection drug users, residents and employees of high-risk settings (e.g., prisons, nursing homes), children under 4 years of age, or children and adolescents exposed to adults at high risk.
 - \geq 15 mm: Persons with no known risk factors for TB.

3. Delayed-Type Hypersensitivity (DTH) Skin Test

•**Purpose**: To evaluate cell-mediated immunity, often used in research and immunological studies.

•Procedure:

- An antigen (e.g., Candida, tetanus toxoid) is injected intradermally.
- The injection site is observed after 48-72 hours.

•Interpretation: A positive reaction (induration and erythema) indicates intact cell-mediated immunity.

Applications of Skin Tests

1.Allergy Diagnosis

- 1. Identifying specific allergens responsible for allergic reactions.
- 2. Tailoring avoidance strategies and treatment plans.

2. Tuberculosis Screening

- 1. Detecting latent TB infection in high-risk populations.
- 2. Guiding decisions on prophylactic treatment.

3.Immunological Research

- 1. Assessing immune system function in clinical and research settings.
- 2. Evaluating responses to vaccines and other immunological interventions.

Advantages

- Non-Invasive: Minimal discomfort and low risk of complications.
- **Rapid Results**: Most tests provide results within minutes to days.
- **Cost-Effective**: Generally inexpensive compared to other diagnostic methods.

Limitations

- **Subjectivity**: Interpretation of results can be subjective and may require experienced personnel.
- False Positives/Negatives: Possibility of cross-reactivity or non-specific reactions.
- Limited Sensitivity: Some tests, like the intradermal test, may miss certain allergies or infections.

Principle, Methods, and Applications of Immunofluorescence

IMMUNOFLUORESCENCE

- Immunofluorescence (IF) is a powerful technique used in biological and biomedical research to visualize and localize specific proteins or other <u>molecules within cells or tissues</u>.
- It utilizes the principle of <u>antigen-antibody interactions coupled with</u> <u>fluorescence microscopy</u> to detect and study the distribution of <u>target</u> <u>molecules.</u>

Principle

- Immunofluorescence relies on the specific binding of **fluorescently labeled antibodies** (primary or secondary antibodies conjugated with fluorophores) **to antigens of interest**.
- Its staining labels a specific target antigen with a fluorescent dye such as fluorescein isothiocyanate or cyanine.
- When illuminated with light of a specific wavelength, the **fluorophore emits light at a longer wavelength**, which can be detected and visualized using a fluorescence microscope.
- This allows for precise localization and quantification of antigens within cells or tissues.

Methods of Immunofluorescence

1. Direct Immunofluorescence (Direct IF)

•Procedure:

- Primary antibody directly conjugated to a fluorophore (e.g., FITC, Alexa Fluor dyes).
- Incubation of the tissue or cell sample with the conjugated antibody.
- Washing steps to remove unbound antibodies.
- Visualization under a fluorescence microscope.

•Advantages:

- Simple and quick procedure.
- Reduced background staining.

•Applications:

- Rapid detection of surface antigens in fixed cells or tissues.
- Diagnosis of autoimmune diseases (e.g., pemphigus vulgaris, lupus nephritis).

2. Indirect Immunofluorescence (Indirect IF)

•Procedure:

- Primary antibody specific to the antigen of interest.
- Incubation of the tissue or cell sample with the primary antibody.
- Washing steps to remove unbound primary antibodies.
- Incubation with a **secondary antibody** conjugated to a fluorophore that recognizes the primary antibody (e.g., anti-mouse IgG).
- Washing steps to remove unbound secondary antibodies.
- Visualization under a fluorescence microscope.

•Advantages:

• Signal amplification due to multiple secondary antibodies binding to each primary antibody.

•Applications:

- Detection of intracellular antigens and proteins.
- Study of protein-protein interactions and cellular localization.

Applications of Immunofluorescence

1.Cell Biology

1. Visualizing subcellular structures such as **organelles** (e.g., mitochondria, endoplasmic reticulum).

2. Studying **protein trafficking** and dynamics within cells.

2.Microbiology

1. Identification and localization of pathogens in infected tissues.

2. Characterization of microbial antigens and virulence factors.

3. Immunology

1. Analysis of immune cell populations and their activation states.

2. Detection of cytokines and other immune molecules in tissues.

4. Clinical Diagnostics

1. Diagnosis of autoimmune diseases (e.g., antinuclear antibodies in lupus).

2. Detection of viral infections (e.g., influenza virus in respiratory samples).

5. Research Applications

1. High-resolution imaging for research on cancer biology, neurobiology, and developmental biology.

2. Quantitative analysis of protein expression and distribution in disease models.

ACKNOWLEDGEMENT

- The presentation is being used for educational and non-commercial purposes.
- Thanks are due to all the original contributors and entities whose pictures were used to create this presentation.