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2. Lagrangian Formalism

2.1 Introduction
Classical mechanics remains a cornerstone in solving many practical problems. Modern theories
may not be necessary when describing simple phenomena, such as how a ball rolls down a ramp
or how a rocket moves through space. While classical mechanics cannot explain the fundamental
building blocks of nature, it is still the most effective theory for understanding macroscopic objects.
This makes classical mechanics an invaluable tool in the physicist’s toolbox. It also serves as an
ideal platform for learning important concepts that are essential to modern physics. For example,
Lagrangian mechanics is a powerful framework for exploring numerous physical models, offering
intuitive insights into the mathematical tools that are indispensable in many areas of physics.

2.2 Newton’s Laws
2.2.1 Newton’s first law - The law of inertia

An object at rest remains at rest, and an object in motion continues to move at a constant velocity
unless acted upon by an external force.

• The first law provides a fundamental criterion for identifying an inertial frame of reference.
• An inertial frame of reference is characterized as one in which equilibrium – whether in a

state of rest or of constant momentum – is self-sustaining and determined entirely by the
initial conditions.

A key implication of this law is the complete equivalence between the mechanical state of rest and
that of constant momentum.

2.2.2 Newton’s second Law
An object or particle responds to an external force with a change in its momentum p⃗, such that the

temporal rate of change of momentum,
d p⃗
dt

, is exactly equal to the external force F⃗.

The linear momentum p⃗ is defined as the product of an object’s mass and its velocity:

p⃗ = m⃗v. (2.1)
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The mechanics of the object is contained in this law. Specifically, it states that there exist frames of
reference in which the motion of the object is described by the following differential equation:

F⃗ =
d p⃗
dt

≡ ˙⃗p. (2.2)

A frame of reference in which the above equation (2.2) is valid is called an inertial frame or a
Galilean frame.

2.2.3 Newton’s third Law
The third law is commonly stated as action and reaction are equal and opposite. In its original
form, it states that the forces two objects (or particles) exert on each other are equal and opposite.
This statement is sometimes referred to as the weak law of action and reaction.

This law can be succinctly expressed as a mathematical equation:

F⃗ji =−F⃗i j, (2.3)

where F⃗ji is the force exerted on particle i by particle j, and F⃗i j is the force exerted on particle j by
particle i.

2.3 Mechanics of a particle

Let r⃗ denote the position vector of a particle relative to the origin O, and let v⃗ represent its velocity
vector (see Figure 2.1). The linear momentum of a particle is defined as the product of its mass and

m

~r

O

~v =
d~r

dt

Figure 2.1: Mechanics of a single particle.

velocity:

p⃗ = m⃗v. (2.4)

As a result of interactions with external objects and fields, the particle may experience forces of
various types. Let F⃗ be the sum of all forces (the net force) exerted on the particle. The mechanics
of the particle is contained in Newton’s second law of motion, which is given by the following
differential equation:

F⃗ =
d p⃗
dt

≡ ˙⃗p. (2.5)
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or

F⃗ =
d
dt

(m⃗v) . (2.6)

In most circumstances, the mass of the particle is constant and equation (2.6) reduces to

F⃗ = m
dv
dt

≡ ma⃗, (2.7)

where a⃗ is the vector acceleration of the particle defined by

a⃗ =
d2⃗r
dt2 . (2.8)

The equation of motion, in general, is a second order ordinary differential equation, assuming F⃗
does not depend on higher derivatives.

2.3.1 Conservation Theorems
Many important conclusions in mechanics can be expressed in terms of conservation theorems,
which indicate the conditions under which mechanical quantities remain constant over time. For
instance, equation (2.5) directly provides the first conservation theorem.

Conservation Theorem for the Linear Momentum
If the total force F⃗ is zero, then the linear momentum p⃗ is conserved.

This means that when the net force exerted on the particle is zero, the linear momentum remains
constant. A solution to the above problem can be directly obtained through integration.

Conservation Theorem for the Angular Momentum
The angular momentum of the particle about the point O, denoted by L⃗ is defined as

L⃗ = r⃗× p⃗. (2.9)

Now define the moment of force or torque about the point O as

N⃗ = r⃗× F⃗ . (2.10)

An analogous equation of motion for the torque N⃗ is obtained by taking the cross product of r⃗ with
equation (2.6). That is

r⃗× F⃗ = r⃗× d
dt

(m⃗v) (2.11)

Consider the differentiation of the term r⃗× m⃗v with respect to t:

d
dt

(⃗r× m⃗v) =
(

d⃗r
dt

× m⃗v
)
+

[⃗
r× d

dt
(m⃗v)

]
= (⃗v× m⃗v)+

[⃗
r× d

dt
(m⃗v)

]
,

=⇒ r⃗× d
dt

(m⃗v) =
d
dt

(⃗r× m⃗v)≡ d⃗L
dt

, [∵ v⃗× m⃗v = 0], (2.12)

Thus

N⃗ =
d⃗L
dt

≡ ˙⃗L. (2.13)

Note that both N⃗ and L⃗ depend on the point O about which the moments are taken.
The torque equation above (2.13) also leads to an immediate conservation theorem: If the total

torque, N⃗, is zero, then ˙⃗L = 0, and angular momentum is conserved.



8 Chapter 2. Lagrangian Formalism

Energy Conservation Theorem for a particle
Next, we consider the work done, W12, by the external force F⃗ on the particle as it moves from
point 1 to point 2 (see Figure 2.2). By definition, the work is

W12 =
∫ 2

1
F⃗ · d⃗s. (2.14)

For constant mass, the integral in equation (2.14) reduces to

O

1

2
W12

W21

Figure 2.2: Work done by the external force upon the particle in going from point 1 to point 2.

∫
F⃗ · d⃗s = m

∫ d⃗v
dt

· v⃗ dt
[
∵ d⃗s =

d⃗s
dt

dt ≡ v⃗ dt
]

=
m
2

∫ d
dt

(
v2) dt,

and therefore

W12 =
m
2

v2
∣∣∣2
1
=

m
2
(
v2

2 − v2
1
)
. (2.15)

The scalar quantity
mv2

2
is called the kinetic energy of the particle and is denoted by T , such that

the work done is equal to the change in kinetic energy:

W12 = T2 −T1. (2.16)

If the force field is such that the work W12 is the same for any physically possible path between
points 1 and 2, then the force is said to be conservative. The system is called a conservative system.

Alternatively, let us suppose the particle is taken from point 1 to point 2 along one possible
path (the solid line in Figure 2.2) and then returned to point 1 along another path (the dashed line in
Figure 2.2). The independence of W12 from the particular path implies that W12 =W21. This means
that the work done around a closed loop is zero, that is,∮

F⃗ · d⃗s = 0. (2.17)

A necessary and sufficient condition for the work, W12, to be independent of the physical path taken
by the particle is that F⃗ is the gradient of some scalar function of position:

F⃗ =−∇⃗V (⃗r), (2.18)
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where V is called the potential or potential energy. This implies, assuming a Cartesian coordinate
system,

F⃗ · d⃗s =−∇⃗V · d⃗s,

=−
(

î
∂V
∂x

+ ĵ
∂V
∂y

+ k̂
∂V
∂ z

)
·
(
î dx+ ĵ dy+ k̂ dz

)
,

=−
(

∂V
∂x

dx+
∂V
∂y

dy+
∂V
∂ z

dz
)
,

or

F⃗ · d⃗s =−dV. (2.19)

Thus, if W12 is independent of the path of integration between the endpoints 1 and 2, it should
be possible to express W12 as the change in a quantity that depends only on the positions of the
endpoints. Substituting (2.19) in equation (2.14), we get

W12 =−
∫ 2

1
dV ≡−V

∣∣∣2
1
,

or

W12 =V1 −V2. (2.20)

Equating W12 in equations (2.16) and (2.20), we get

T2 −T1 =V1 −V2 =⇒ T1 +V1 = T2 +V2. (2.21)

Thus, the energy conservation theorem for a particle reads as if the forces acting on a particle are
conservative, then the total energy of the particle, T +V , is conserved.

2.4 Mechanics of a system of particles

Next, we are generalizing the ideas studied in the previous section to systems of many particles.
However, first, we must distinguish between the external forces acting on the particles due to
sources outside the system, and internal forces on, say, some particle i due to all other particles in
the system. The equation of motion for the i-th particle is written as

∑
j

F⃗ji + F⃗(e)
i = ˙⃗pi, (2.22)

where F⃗(e)
i stands for an external force, and F⃗ji is the internal force on the i-th particle due to the

j-th particle. We shall assume that the F⃗ji obey Newton’s third law of motion in its original form:
that the forces two particles exert on each other are equal and opposite.

Summed over all the particles, equation (2.22) takes the form

d2

dt2 ∑
i

mi⃗ri = ∑
i

F⃗(e)
i +∑

i, j
i̸= j

F⃗ji. (2.23)

The first sum on the R.H.S. is simply the total external force F⃗(e), while the second term vanishes,
since the law of action and reaction states that each pair F⃗ji + F⃗i j is zero

(
∵ F⃗ji =−F⃗i j

)
. To further
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mi

mj

~r i

~r j

~rij = ~ri − ~rj
~Fji = −~Fij

O

~r i

~r j

~R

mi

mj

M
c.m.

O

Figure 2.3: Mechanics of a system of particles: (a) The center of mass of a system of particles, and
(b) an illustration of internal forces obeying the strong law of action and reaction.

simplify the left-hand side (L.H.S.), we define a vector R⃗ as the mass-weighted average of the radii
vectors of the particles as [see Figure 2.3(a)]:

R⃗ =
∑mi⃗ri

∑mi
=

∑mi⃗ri

M
. (2.24)

The vector R⃗ defines the center of mass of the system. With this definition, Equation (2.23) reduces
to

M
d2R⃗
dt2 = ∑

i
F⃗(e)

i ≡ F⃗(e), (2.25)

which states that the center of mass moves as if the total external force acts on the entire mass of
the system concentrated at the center of mass. The internal forces, if they obey Newton’s third
law, have no effect on the motion of the center of mass. %item An example is the motion of an
exploding shell–the center of mass of the fragments travels as if the shell were still a single piece
(neglecting air resistance).

2.4.1 Conservation Theorem for the Total Linear Momentum
The total linear momentum of the system,

P⃗ = ∑
i

mi
d⃗ri

dt
≡ M

dR⃗
dt

, (2.26)

is the total mass of the system times the velocity of the center of mass.
The conservation theorem of total linear momentum for a system of particles states: If the total

external force acting on the system is zero, then the total linear momentum of the system remains
conserved.

2.4.2 Conservation Theorem for the Total Angular Momentum
Next, we examine the angular momentum of a system of particles. It is obtained by forming the
cross product r⃗i × p⃗i and summing over all particles i. Using the identity provided in Equation
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(2.12), we write:

∑
i

(⃗
ri × ˙⃗pi

)
= ∑

i

d
dt

(⃗ri × p⃗i)≡ ˙⃗L,

where L⃗ represents the total angular momentum. Thus

d⃗L
dt

= ∑
i

(⃗
ri × F⃗(e)

i

)
+∑

i, j
i ̸= j

(⃗
ri × F⃗ji

)
. (2.27)

The last term on the R.H.S. of equation (2.27) can be considered as a sum of pairs of the form(⃗
ri × F⃗ji

)
+
(⃗

r j × F⃗i j

)
=
(⃗

ri × F⃗ji

)
−
(⃗

r j × F⃗ji

)
,

= (⃗ri − r⃗ j)× F⃗ji ≡ r⃗i j × F⃗ji. (2.28)

Then equation (2.27) can be rewritten as

d⃗L
dt

= ∑
i

(⃗
ri × F⃗(e)

i

)
+

1
2 ∑

i, j
i̸= j

(⃗
ri j × F⃗ji

)
. (2.29)

To establish the equation of motion for the total torque, it is evident that the term r⃗i j × F⃗ji must
vanish. This implies that the internal forces between two particles, in addition to being equal and
opposite, also lie along the line joining the particles. Such a condition is referred to as the strong
law of action and reaction. Consequently, all the cross products r⃗i j × F⃗ji vanish. As illustrated in
Figure 2.3(b), the force F⃗ji must lie along the vector r⃗i j. The equation of motion is therefore given
by

d⃗L
dt

= ∑
i

N⃗(e)
i ≡ N⃗(e), (2.30)

where N⃗(e) represents the total external torque.
The conservation theorem states: The total angular momentum, L⃗, is a constant of motion if

the total external torque is zero, i.e., N(e) = 0.
Note that the conservation of total linear momentum for a system of particles, in the absence of

applied forces, assumes the validity of the weak law of action and reaction for the internal forces.
In contrast, the conservation of total angular momentum for the system, in the absence of applied
torques, requires the validity of the strong law of action and reaction, which further necessitates
that the internal forces are central.

An example is the force of gravity, which satisfies the strong form of the action-reaction law.
We will discuss central force problems in more detail later.

• However, it is possible to find forces for which action and reaction are equal, even though the
forces are not central.

• For instance, in a system involving moving charges, the forces between the charges, as
predicted by the Biot-Savart law, violate both forms of the action-reaction law.

• The conservation theorems derived above are not applicable in such cases, at least in the
form discussed here.

• In an isolated system of moving charges, the sum of the mechanical angular momentum and
the electromagnetic angular momentum of the field is conserved.
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Equation (2.26) states that the total linear momentum of the system is the same as if the entire
mass were concentrated at the center of mass and moving with it. An analogous theorem for the
angular momentum involving the center of mass can be derived as follows. Considering the origin
O as the reference point, the total angular momentum of the system is given by

L⃗ = ∑
i
(⃗ri × p⃗i) (2.31)

Let R⃗ be the radius vector from O to the center of mass, and let r⃗′i be the radius vector from the
center of mass to the i-th particle. We define

~r i

~R

i

c.m.

~r ′i

O

Figure 2.4: Illustration of vectors representing the shift in the reference point for angular momentum.

r⃗i = r⃗ ′i + R⃗, and v⃗i = v⃗ ′
i + v⃗, (2.32)

where v⃗ =
dR⃗
dt

is the velocity of the center of mass relative to O, and

v⃗ ′
i =

d⃗r ′i
dt

, (2.33)

is the velocity of the i-th particle relative to the center of mass of the system. Using equation (2.31),
we rewrite the total angular momentum as

L⃗ = ∑
i

(
R⃗×mi⃗v

)
+∑

i

(⃗
r ′i ×mi⃗v ′

i
)
+

[(
d
dt ∑

i
mi⃗r ′i

)
× v⃗

]
+

(
R⃗×∑

i
mi⃗r ′i

)
. (2.34)

The last two terms in the above expression vanishes as both contain the factor ∑
i

mi⃗r ′i . Actually,

∑
i

mi⃗r ′i defines the radius vector of the center of mass in the very coordinate system whose origin is

the center of mass itself, which is a null vector. Then the total angular momentum about O is

L⃗ =
(

R⃗×Mv⃗
)
+∑

i

(⃗
r ′i × p⃗ ′

i
)
. (2.35)

Thus, the total angular momentum about a point O is the angular momentum of the motion
concentrated at the center of mass, plus the angular momentum of the motion about the center of
mass. The form above emphasizes that, in general, L⃗ depends on the origin O, through the vector R⃗
only. If the center of mass is at rest with respect to O, the angular momentum is independent of the
point of reference, and L⃗ reduces to the angular momentum about the center of mass.
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2.4.3 Conservation of Total Energy
Finally, let us consider the energy equation. We calculate the work done by all forces in moving the
system from the initial configuration 1 to the final configuration 2:

W12 = ∑
i

∫ 2

1
F⃗i · d⃗si = ∑

i

∫ 2

1
F⃗(e)

i · d⃗si +∑
i, j

i ̸= j

∫ 2

1
F⃗ji · d⃗si. (2.36)

The equation of motion can be used to reduce the integrals to

∑
i

∫ 2

1
F⃗i · d⃗si = ∑

i

∫ 2

1
mi

d⃗vi

dt
· v⃗idt,

[
∵ F⃗i = mi⃗ai ≡ mi

d⃗vi

dt
, d⃗si =

d⃗si

dt
dt ≡ v⃗idt

]
= ∑

i

∫ 2

1
mi d

(
1
2

v⃗i · v⃗i

)
= ∑

i

∫ 2

1
d
(

1
2

miv2
i

)
,

= ∑
i

1
2

mi v2
i

∣∣∣2
1
= ∑

i

(
1
2

miv2
i2 −

1
2

miv2
i1

)
. (2.37)

Or

W12 = T2 −T1, (2.38)

where T = ∑
i

1
2

miv2
i is the total kinetic energy of the system.

Transformation to center of mass coordinates → T can also be written as

T =
1
2 ∑

i
mi
(⃗
v+ v⃗ ′) · (⃗v+ v⃗ ′) ,

=
1
2 ∑

i
miv2 +

1
2 ∑

i
mi⃗v ′2 + v⃗ · d

dt

(
∑

i
mi⃗r ′

)
.

By virtue, the last term in the above equation is zero. Thus

T =
1
2

Mv2 +
1
2 ∑

i
mi⃗v ′2. (2.39)

Hence, the kinetic energy, like angular momentum, consists of two parts: the kinetic energy as if all
the mass were concentrated at the center of mass, plus the kinetic energy of motion about the center
of mass.

In the special case where the external forces can be expressed as the gradient of a scalar
potential, the first term in Eq. (2.36) can be written as

∑
i

∫ 2

1
F⃗(e)

i · d⃗si =−∑
i

∫ 2

1
∇⃗iVi · d⃗si =−∑

i
Vi

∣∣∣2
1
, (2.40)

where the subscript i on the ∇⃗ operator indicates that the derivatives are taken with respect to the
components of r⃗i.

If the internal forces are also conservative, then the mutual forces between the i-th and j-th
particles, F⃗i j and F⃗ji, can be derived from a potential function, say Vi j. To satisfy the strong law of
action and reaction, Vi j must be a function of the distance between the particles only:

Vi j =Vi j
(∣∣⃗ri − r⃗ j

∣∣) . (2.41)
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The two forces are the automatically equal and opposite,

F⃗ji =−∇⃗iVi j =+∇⃗ jVji =−F⃗i j, (2.42)

and lie along the line joining the two particles,

∇⃗i jVi j
(∣∣⃗ri − r⃗ j

∣∣)= (∣∣⃗ri − r⃗ j
∣∣) f , (2.43)

where f is some scalar function.
Note: If Vi j were also a function of the difference between some other pair of vectors associated

with the particles, such as their velocities or their intrinsic “spin” angular momenta, then the forces
would still be equal and opposite, but would not necessarily lie along the direction between the
particles.

When the forces are all conservative, the second term in Eq. (2.36) can be rewritten as a sum
over pairs of particles, with the terms for each pair taking the form

−
∫ 2

1

(
∇⃗iVi j · d⃗si + ∇⃗ jVi j · d⃗s j

)
. (2.44)

If we denote the difference vector r⃗i − r⃗ j by r⃗i j and if ∇⃗i j stands for the gradient with respect to ri j,
then

∇⃗iVi j = ∇⃗i jVi j =−∇⃗ jVi j,

and

d⃗si − d⃗s j = d⃗ri − d⃗r j = d⃗ri j,

so that the term for the i j pair has the form

−
∫

∇⃗i jVi j · d⃗ri j.

The total work arising from internal forces then reduces to

−1
2 ∑

i, j
i ̸= j

∫ 2

1
∇⃗iVi j · d⃗ri j =−1

2 ∑
i, j
i̸= j

Vi j

∣∣∣2
1
. (2.45)

The factor
1
2

appears in Eq. (2.45) because, in summing over both i and j, each member of a given
pair is included twice.

Thus, if the external forces and internal forces are both derivable from potentials, it is possible
to define a total potential energy, V , of the system,

V = ∑
i

Vi +
1
2 ∑

i, j
i ̸= j

Vi j. (2.46)

so that the total energy T +V is conserved.
• The second term in Eq. (2.46) is called the internal potential energy of the system.
• In general, the internal potential energy need not be zero, and it may vary as the system evolves

with time.
• Only for the particular class of systems known as rigid bodies will the internal potential energy

always be constant.
• A rigid body can be defined as a system of particles in which the distances r⃗i j are fixed and cannot

vary with time. In such a case, the vectors d⃗ri j can only be perpendicular to the corresponding
r⃗i j, and therefore to the Fi j.

• Therefore, in a rigid body, the internal forces do not do work, and the internal potential energy
must remain constant.
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2.5 Constraints
We all obtain the impression that all problems in mechanics have been reduced to solving the
following set of differential equations:

mi ¨⃗ri = F⃗(e)
i −∑

i
F⃗ji. (2.47)

Substituting the various forces acting upon the particles of the system, it becomes a mathematical
problem of solving a set of ordinary differential equations. However, solving these equations is a
real challenge, which we will not focus on for the time being.

In most cases, it becomes necessary to take into account the constraints that limit or restrict the
motion of the system. For instance, in rigid bodies, the constraints on the motion of the particles
keep the distances ri j unchanged. Other examples are:
• The beads of an abacus are constrained to one-dimensional motion by the supporting wires.
• Gas molecules within a container are constrained by the walls of the vessel to move only inside

the container.
• A particle placed on the surface of a solid sphere is subject to the constraint that it can move only

on the surface or in the region exterior to the sphere.

2.5.1 Classification of constraints
Constraints may be classified in various ways. However, we restrict ourselves to the following
classification.

If the conditions of constraints are expressed as equations connecting the coordinates of the
particles of the form

f (⃗r1 ,⃗r2 ,⃗r3, . . . , t) = 0, (2.48)

then the constraints are said to be holonomic. The simplest example of holonomic constraints is
the rigid body, where the constraints are expressed by equations of the form

(⃗ri − r⃗ j)
2 − c2

i j = 0, (2.49)

with ci j’s constants.
A particle constrained to move along a curve or on a given surface is another example of a

holonomic constraint. In this case, the equations defining the curve or surface are the equations of
the constraint.

Constraints that cannot be expressed in the above manner are called nonholonomic. The walls
of a gas container constitute a nonholonomic constraint. The constraint involved in the example
of a particle placed on the surface of a sphere is also nonholonomic. It can be expressed as an
inequality of the form

r2 −a2 ≥ 0, (2.50)

where a is the radius of the sphere.
If the equations of constraint contain time as an explicit variable, then it is said to be rheonomous.

On the other hand, if time does not appear explicitly in the equations of constraint, then it is known
as scleronomous.

A bead sliding on a rigid curved wire fixed in space is an example of a scleronomous constraint.
If the wire is moving in a prescribed manner, the constraint becomes rheonomous.

Constraints pose two types of difficulties in the solution of mechanical problems:
(1) The coordinates r⃗i are no longer all independent since they are connected by the equations of

constraint. Hence, the equations of motion are not all independent.
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(2) The force of constraint is not specified. For instance, the force that the wire exerts on the
bead or the force that the wall exerts on the gas particle, as seen in the examples above, is not
known.

Imposing constraints on the system is simply another method of stating that there are forces present
in the problem that cannot be specified directly. However, these constraint forces are known in
terms of their effects on the system.
Exercise 2.1 Classify the following systems according to the type of constraints:

(a) A sphere rolling downward without friction on a fixed sphere.
(b) A cylinder rolling down an inclined plane with inclination angle α .
(c) A particle gliding on the rough inner surface of a rotating paraboloid.
(d) A particle moving without friction along a very long bar. The bar rotates with angular velocity

ω in the vertical plane about the horizontal axis.

2.5.2 Generelized coordinates

In the case of holonomic constraints, the first difficulty is solved by the introduction of generalized
coordinates. So far, we have been implicitly thinking in terms of Cartesian coordinates. A system
of N particles, free from constraints, has 3N independent coordinates or degrees of freedom.

If there are holonomic constraints, expressed in k equations of the form (2.48), these k equations
can be used to eliminate k of the 3N coordinates. This leaves us with 3N−k independent coordinates,
and the system is said to have 3N − k degrees of freedom. The elimination of the dependent
coordinates can be achieved by introducing new, independent variables q1,q2,q3, . . . ,q3N−k, where
the old coordinates r⃗1 ,⃗r2 ,⃗r3, . . . ,⃗rN are expressed in terms of equations of the form

r⃗1 = r⃗1(q1,q2,q3, . . . ,q3N−k, t), (2.51a)

r⃗2 = r⃗2(q1,q2,q3, . . . ,q3N−k, t), (2.51b)
...

r⃗N = r⃗N(q1,q2,q3, . . . ,q3N−k, t), (2.51c)

which implicitly contain the constraints. These are transformation equations from {⃗ri, i =
1,2, . . . ,N} to {q j, j = 1,2, . . . ,3N − k}. The above equations can also be considered as a para-
metric representation of the variables r⃗i. Furthermore, it is assumed that one can transform back
from q j to the r⃗i, i.e., Eqs. (2.51), combined with the k constraint equations, can be inverted to
obtain any q j as a function of r⃗i and time, t. Or simply,

q1 = q1(⃗r1 ,⃗r2 ,⃗r3, . . . ,⃗rN , t), (2.52a)

q2 = q2(⃗r1 ,⃗r2 ,⃗r3, . . . ,⃗rN , t), (2.52b)
...

qN = q3N−k(⃗r1 ,⃗r2 ,⃗r3, . . . ,⃗rN , t), (2.52c)

In the case of a particle constrained to move on the surface of a sphere, the two angles expressing
its position on the sphere (latitude and longitude) are the possible generalized coordinates. In the
example of a double pendulum moving in a plane, the generalized coordinates are the two angles
θ1 and θ2 (see Figure 2.5). In a double pendulum, two particles are connected by an inextensible,
light rod and suspended by a similar rod fastened to one of the particles, as illustrated in Figure 2.5.
Exercise 2.2 A particle moving on the ellipse as shown in Fig. 2.6. Identify suitable generalized
coordinate(s) and write down the transformation equations.
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Figure 2.5: Illustration of a double pendulum.

y

x

m

φ

Figure 2.6: Illustration of a particle moving in an ellipse.

2.6 D’Alembert’s principle and Lagrange equations

2.6.1 Principle of virtual work and D’Alembert’s principle

Consider a change in the configuration of a system as a result of an arbitrary infinitesimal change
in the coordinates, δ r⃗i, consistent with the forces and constraints imposed on the system at the
given instant t. Such a change leads to a virtual displacement, as there is no passage of time. We
refer to this infinitesimal displacement as "virtual" to distinguish it from an actual displacement of
the system occurring over a time interval dt. The virtual displacement must be consistent with the
forces and constraints imposed on the system, meaning it should not violate the laws of force or the
constraints acting on the system.
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Suppose the system is in equilibrium, meaning that the total force on each particle vanishes,
i.e., F⃗i = 0. The dot product F⃗i · δ r⃗i, which represents the virtual work of the force F⃗i during
the displacement δ r⃗i, also vanishes. The sum of these vanishing products over all particles must
therefore be zero:

∑
i

F⃗i ·δ r⃗i = 0. (2.53)

F⃗i may be decomposed into the applied force, F⃗(a)
i , and the force of constraint, f⃗i, that is,

F⃗i = F⃗(a)
i + f⃗i. (2.54)

Then Eq. (2.53) becomes

∑
i

F⃗(a)
i ·δ r⃗i +∑

i
f⃗i ·δ r⃗i = 0. (2.55)

Now, we restrict ourselves to systems for which the net virtual work of the constraint forces is zero.
This condition holds for rigid bodies and is also valid for a large class of other constraints.

For instance, if a particle is restricted to move on the surface of a table, the force of constraint
is perpendicular to the surface, while the virtual displacement must be tangent to it, and hence the
virtual work vanishes. However, this is no longer true if sliding friction forces are present, in which
case we exclude such systems from consideration.

The condition for the equilibrium of a system is that the virtual work of the applied forces
vanishes:

∑
i

F⃗(a)
i ·δ r⃗i = 0. (2.56)

Equation (2.56) is called the principle of virtual work.
Note that the coefficients of δ r⃗i cannot be set equal to zero. That is, in general, F⃗(a)

i ̸= 0, since
the δ r⃗i are not completely independent but are connected by the constraints. In order to equate the
coefficients to zero, one must transform the principle into a form involving the virtual displacement
of the generalized coordinates qi, which are independent.

Let us write the equation of motion, F⃗i = ˙⃗pi, as

F⃗i − ˙⃗pi = 0. (2.57)

Eq. (2.57) states that the particles in the system will be in equilibrium under a force equal to the
actual force plus a reverse effective force − ˙⃗pi. Then, we can rewrite Eq. (2.53) as

∑
i

(
F⃗i − ˙⃗pi

)
·δ r⃗i = 0, (2.58)

and, making the same resolution into the applied forces and forces of constraint results

∑
i

(
F⃗(a)

i − ˙⃗pi

)
·δ r⃗i +∑

i
f⃗i ·δ r⃗i = 0, (2.59)

By restricting ourselves to systems for which the virtual work of the forces of constraint vanishes,
we obtain

∑
i

(
F⃗(a)

i − ˙⃗pi

)
·δ r⃗i = 0. (2.60)

The above equation (2.60) is often called D’Alembert’s principle. Note that the forces of constraint
no longer appear in the above expression.
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2.6.2 Derivation of Euler-Lagrange equations from D’Alembert’s principle
Now, we need to transform the principle into an expression involving virtual displacements of the
generalized coordinates, which are then independent of each other so that the coefficients of the δqi

can be set separately equal to zero. The translation r⃗i to q j starts from the transformation equations
(2.51),

r⃗i = r⃗i (q1,q2,q3, . . . ,qn, t) , (2.61)

assuming n independent coordinates (or n degrees of freedom). Then the velocity, v⃗i can be
expressed as

v⃗i =
d⃗ri

dt
=

∂ r⃗i

∂q1

dq1

dt
+

∂ r⃗i

∂q2

dq2

dt
+ . . .+

∂ r⃗i

∂qn

dqn

dt
+

∂ r⃗i

∂ t
,

=
∂ r⃗i

∂q1
q̇1 +

∂ r⃗i

∂q2
q̇2 + . . .+

∂ r⃗i

∂qn
q̇n +

∂ r⃗i

∂ t
.

Or

v⃗i =
n

∑
k=1

∂ r⃗i

∂qk
q̇k +

∂ r⃗i

∂ t
. (2.62)

Similarly, the arbitrary virtual displacement δ r⃗i can be connected with the virtual displacements
δqi by

δ r⃗i = ∑
j

∂ r⃗i

∂q j
δq j. (2.63)

Note that no variation of time, that is δ t = 0 (since virtual displacement by definition considers
only displacements of the coordinates). Since we are dealing with the applied forces only, hereafter
we shall drop the superscript (a) without ambiguity.

In terms of generalized coordinates, the virtual work of the force F⃗i becomes

∑
i

F⃗i ·δ r⃗i = ∑
i, j

F⃗i ·
∂ r⃗i

∂q j
δq j = ∑

j
Q jδq j, (2.64)

where Q j are the components of the generalized force, defined as

Q j = ∑
i

F⃗i ·
∂ r⃗i

∂q j
. (2.65)

Note that q’s need not have the dimension of length, so the Q’s do not necessarily have the
dimensions of force, but Q jδq j must always have the dimensions of work. For instance, Q j

might be a torque NJ and dq j a differential angle dθ j, which makes N jdθ j a differential of work.
The other term in Eq. (2.6) becomes

∑
i

˙⃗pi ·δ r⃗i = ∑
i

mi ¨⃗ri ·δ r⃗i.

Expressing δ r⃗i by (2.63), the above expression becomes

∑
i

˙⃗pi ·δ r⃗i = ∑
i, j

mi ¨⃗ri ·
∂ r⃗i

∂q j
δq j. (2.66)
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Consider now the relation

∑
i

mi ¨⃗ri ·
∂ r⃗i

∂q j
= ∑

i

[
d
dt

(
mi ˙⃗ri ·

∂ r⃗i

∂q j

)
−mi ˙⃗ri ·

d
dt

(
∂ r⃗i

∂q j

)]
. (2.67)

In the last term of the above expression, the differentiation with respect to t and q j can be inter-
changed, that is,

d
dt

(
∂ r⃗i

∂q j

)
=

∂ ˙⃗ri

∂q j
= ∑

k

∂ 2⃗ri

∂q j∂qk
q̇k +

∂ 2⃗ri

∂q j∂ t
≡ ∂ v⃗i

∂q j
, (2.68)

by Eq. (2.62). We can also see from Eq. (2.62) that

∂ v⃗i

∂ q̇ j
=

∂ r⃗i

∂q j
. (2.69)

Substituting these changes in Eq. (2.67)

∑
i

mi ¨⃗ri ·
∂ r⃗i

∂q j
= ∑

i

[
d
dt

(
mi⃗vi ·

∂ v⃗i

∂ q̇ j

)
−mi⃗vi ·

∂ v⃗i

∂q j

]
,

Then putting all the expressions together in expression (2.60), we get

∑
j

{
Q j −∑

i

[
d
dt

(
mi⃗vi ·

∂ v⃗i

∂ q̇ j

)
−mi⃗vi ·

∂ v⃗i

∂q j

]}
δq j = 0,

or

∑
j

{
d
dt

[
∂

∂ q̇ j

(
∑

i

1
2

miv2
i

)]
− ∂

∂q j

(
∑

i

1
2

miv2
i

)
−Q j

}
δq j = 0.

[
∵ v2

i = v⃗i · v⃗i
]

(2.70)

With T = ∑
i

1
2

miv2
i being the system kinetic energy, the above equation can be written as

∑
j

{
d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
−Q j

}
δq j = 0. (2.71)

Since the generalized coordinates q j’s are all independent and so the virtual displacement δq j, the
above equation is valid only if each of the coefficients of δq j identically vanishes. That is,

d
dt

(
∂T
∂ q̇ j

)
− ∂T

∂q j
−Q j = 0, (2.72)

where j = 1,2, . . . ,n.
When the forces are derivable from a scalar potential function, V ,

F⃗i =−∇⃗iV.

Then the generalized forces can be written as

Q j = ∑
i

F⃗i ·
∂ r⃗i

∂q j
=−∑

i
∇⃗iV · ∂ r⃗i

∂q j
,
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which is exactly the same expression for the partial derivative of a function −V (⃗r1 ,⃗r2, . . . ,⃗rN , t)
with respect to q j:

Q j =− ∂V
∂q j

.

Equations (2.72) can then be rewritten as

d
dt

(
∂T
∂ q̇ j

)
− ∂ (T −V )

∂q j
= 0. (2.73)

As the potential V is does not depend on the generalized velocities, we can include a term in V in
the partial derivative with respect to q̇:

d
dt

(
∂ (T −V )

∂ q̇ j

)
− ∂ (T −V )

∂q j
= 0. (2.74)

Defining a new function, the Lagrangian L, as

L = T −V, (2.75)

the Eqs. (2.74) become

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0. (2.76)

The above expressions referred to as Lagrange’s equations or Euler-Lagrange’s equations.
Note that for a particular set of equations of motion there is no unique choice of Lagrangian

such that Eqs. (2.76) lead to the equations of motion in the given generalized coordinates.
Exercise 2.3 If L(q̇,q, t) is a Lagrangian for a system satisfying Lagrange’s equations, show by
direct substitution that

L′ = L(q̇,q, t)+
dF(q, t)

dt
,

also satisfies Lagrange’s equations where F is arbitrary, but differentiable, function of q ant t.
Given

L′ = L+
dF
dt

= L+∑
k

∂F
∂qk

q̇k +
∂F
∂ t

,

We need to prove

d
dt

(
∂L′

∂ q̇ j

)
− ∂L′

∂q j
=

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= 0.

Calculate the required derivatives:

∂L′

∂q j
=

∂L
∂ q̇ j

+∑
k

∂ 2F
∂q j∂qk

q̇k +
∂ 2F

∂q j∂ t
,

∂L′

∂ q̇ j
=

∂L
∂ q̇ j

+
∂F
∂q j

;
d
dt

(
∂L′

∂ q̇ j

)
=

d
dt

(
∂L
∂ q̇ j

)
+∑

k

∂ 2F
∂qk∂q j

q̇k +
∂ 2F

∂ t∂q j

Therefore

d
dt

(
∂L′

∂ q̇ j

)
− ∂L′

∂q j
=

d
dt

(
∂L
∂ q̇ j

)
+∑

k

∂ 2F
∂qk∂q j

q̇k +
∂ 2F

∂ t∂q j
−
[

∂L
∂ q̇ j

+∑
k

∂ 2F
∂q j∂qk

q̇k +
∂ 2F

∂q j∂ t

]
,

which implies

d
dt

(
∂L′

∂ q̇ j

)
− ∂L′

∂q j
=

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂ q̇ j
.
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Exercise 2.4 Construct the Lagrangian of a particle of m moving on a rotating parabolic surface
and deduce the equations of motion.

Figure 2.7: Illustration of a moving particle on the surface of a rotating parabola.

Exercise 2.5 A pendulum is attached to a massless rim of radius a and rotates at a constant velocity
ω . The bob is of mass m and the length of the inextensible thread is l as illustrated in Figure 2.8.
Obtain the Lagrangian and deduce the equations of motion.

x

y

m

θ

ωt
ω

a

l

Figure 2.8: Illustration of a pendulum on a rim.
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2.7 Velocity dependent potentials
Lagrange equations can be described the the form (2.76) even if there is no potential function, V , in
the usual sense, providing the generalized are obtained from a function U(q, q̇) by the prescription

Q j =− ∂U
∂q j

+
d
dt

(
∂U
∂ q̇ j

)
. (2.77)

In such case, Eqs. (2.76) still follow from (2.72) with the Lagrangian given by

L = T −U. (2.78)

Here U may be called a generalized potential or velocity-dependent potential.

2.7.1 Moving charge in both an electric and a magnetic field
Consider a particle of mass m, and an electric charge, q, moving at a velocity, v⃗, in an otherwise
charge-free region containing both an electric field, E⃗, and a magnetic field, B⃗, which may depend
upon time and position.

The charge experience a force, called the Lorentz force, given by

F⃗ = q
[
E⃗ +

(⃗
v× B⃗

)]
. (2.79)

Both E⃗ = E⃗(t,x,y,z) and B⃗ = B⃗(t,x,y,z) are continuous functions of time and position derivable
from a scalar potential φ(t,x,y,z) and a vector potential A⃗(t,x,y,z) by

E⃗ =−∇⃗φ − ∂ A⃗
∂ t

, (2.80a)

and

B⃗ =−∇⃗× A⃗. (2.80b)

The force can be derived from the following velocity-dependent potential energy

U = qφ −qA⃗ · v⃗. (2.81)

so the Lagrangian, L = T −U , is

L =
1
2

mv2 −qφ +qA⃗ · v⃗. (2.82)

The Lagrange’s equations are

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0,

d
dt

(
∂L
∂ ẏ

)
− ∂L

∂y
= 0, and

d
dt

(
∂L
∂ ż

)
− ∂L

∂ z
= 0. (2.83)

The x-component of Lagrange’s equations becomes,

mẍ = q
(

vx
∂Ax

∂x
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

)
−q
(

∂φ

∂x
+

dAx

dt

)
(2.84)

The total time derivative of Ax can be expressed as

dAx

dt
=

∂Ax

∂ t
+

∂Ax

∂x
dx
dt

+
∂Ax

∂y
dy
dt

+
∂Ax

∂ z
dz
dt

≡ ∂Ax

∂ t
+

∂Ax

∂x
ẋ+

∂Ax

∂y
ẏ+

∂Ax

∂ z
ż (2.85)

=
∂Ax

∂ t
+

(
î
∂Ax

∂x
+ ĵ

∂Ax

∂y
+ k̂

∂Ax

∂ z

)
·
(
îvx + ĵvy + k̂vz

)
[∵ ẋ = vx, ẏ = vy, ż = vz]
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or

dAx

dt
=

∂Ax

∂ t
+ v⃗ · ∇⃗Ax. (2.86)

The x component of
(⃗

v× B⃗
)

, using (2.80b), is given as(⃗
v× B⃗

)
x
= vy

(
∂Ay

∂x
− ∂Ax

∂y

)
+ vz

(
∂Az

∂x
− ∂Ax

∂ z

)
. (2.87)

Combining these expressions gives the equation of motion in the x-direction

mẍ = q
[
Ex +

(⃗
v× B⃗

)
x

]
. (2.88)

On a component-by-component comparison, equations (2.88) and (2.79) are identical. This shows
that the Lorentz force equation is derivable from a velocity dependent potential of the form (2.81).

2.7.2 Rayleigh’s dissipation function
If not all the forces acting on the system are derivable from a potential, then Lagrange’s equations
can always be written in the form

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= Q j, (2.89)

where L contains the potential of the conservative forces as before, and Q j represents the forces not
arising from a potential. Such a situation occurs when frictional forces are present. In most cases,
the frictional force is proportional to the velocity of the particle, so that its x-component has the
form

Ffx =−kxvx. (2.90)

Frictional forces of this type may be derived in terms of a function F , known as Rayleigh’s
dissipation function, and defined as

F =
1
2 ∑

i

(
kxv2

ix + kyv2
iy + kzv2

iz
)
, (2.91)

where the summation is over the particle of the system. From this definition we can write

Ffx =−∂F

∂vx
, (2.92)

or

Ffx =−∇⃗vF . (2.93)

A physical interpretation may be given to the dissipation function by evaluating the work done by
the system against friction as

dw f =−F⃗f · d⃗r =−F⃗f · v⃗dt =
(
kxv2

x + kyv2
y + kzv2

z
)

dt ≡ 2F . (2.94)

Hence, 2F is the rate of energy dissipation due to friction. The component of the force resulting
from the force of friction is then given by

Q j = ∑
i

F⃗fi ·
∂ r⃗i

∂q j
=−∑

i
∇⃗vF · ∂ r⃗i

∂q j

=−∑
i

∇⃗vF · ∂ ˙⃗ri

∂ q̇ j
. (2.95)
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The Lagrange equations with dissipation becomes

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
+

∂F

∂ q̇ j
= 0, (2.96)

so that two scalar functions, L and F , must be specified to obtain the equations of motion.

■ Example 2.1 Stoke’s law: A sphere of radius a moving at a speed v, in a medium of viscosity η

experiences the frictional drag force Ff = 6πηav. ■

2.8 Simple Applications

■ Example 2.2 Motion of a particle is space using Cartesian coordinates: The generalized
forces needed are Fx, Fy and Fz (the components of the force vector). ■

The kinetic energy is given by

T =
1
2

m
(
ẋ2 + ẏ2 + ż2) . (2.97)

∂T
∂x

=
∂T
∂y

=
∂T
∂ z

= 0, and
∂T
∂ ẋ

= mẋ,
∂T
∂ ẏ

= mẏ,
∂T
∂ ż

= mż.

and the equations of motion are [using Eq. (2.72)]

d
dt

(mẋ) = Fx,
d
dt

(mẏ) = Fy,
d
dt

(mż) = Fz (2.98)

■ Example 2.3 Atwood’s machine: Figure 2.9(a) An example of a conservative system with
holonomic, scleronomous constraint (the pulley is assumed to be frictionless and massless). ■

M1

M2

x l − x

(a)

M1

M2

X1 X2

x1

x2

m1

m2

(b)

Figure 2.9: (a) Atwood’s machine (b) Atwood’s machine with two pulleys.
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There is only one independent coordinate x, the position of the other weight being determined
by the constraint that the length of the rope is l. The potential energy is

V =−M1gx−M2g(l − x), (2.99)

while the kinetic energy is

T =
1
2
(M1 +M2) ẋ2. (2.100)

The Lagrangian can be written as

L = T −V =
1
2
(M1 +M2) ẋ2 +M1gx+M2g(l − x). (2.101)

The required derivatives are

∂L
∂x

= (M1 −M2)g, and
∂L
∂ ẋ

= (M1 +M2) ẋ.

The Euler-Lagrange equation for the Atwood’s machine can be written as

d
dt

(
∂L
∂ ẋ

)
− ∂L

∂x
= 0, (2.102)

implies

(M1 +M2) ẍ = (M1 −M2)g, (2.103)

or

ẍ =
(M1 −M2)

(M1 +M2)
g, (2.104)

which is the familiar result obtained by more elementary means. This trivial problem emphasizes
that the forces of constraint (here the tension in the rope) appear nowhere in the Lagrangian
formulation. The tension in the rope can not be found directly by the Lagrangian method.

■ Example 2.4 A bead (or ring) sliding on a uniformly rotating wire in a force-free space:
The wire is straight, and is rotated uniformly about some fixed axis perpendicular to the wire (see
Figure 2.10). This example is a simple illustration of a constraint being time dependent, with the

r

ω

Figure 2.10: A bead sliding on a uniformly rotating wire in a force-free space

rotation axis along z and the wire in the xy plane. ■
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The transformation equations explicitly contain the time.

x = r cosωt.

y = r sinωt.

where r is the distance along wire from the rotation axis and ω is the angular velocity of rotation.
In this example, the constraint can be expressed by the relation θ̇ = ω . Hence, the kinetic

energy turns out to be

T =
1
2

m
(
ṙ2 + r2

ω
2) .

The equation of motion is

mr̈−mrω
2 = 0,

which is the familiar simple harmonic oscillator equation with a change of sign. The solution
r = eωt shows that the bead moves exponentially outward because of the centripetal acceleration.
Again, the method cannot furnish the force of constraint that keep the bead on the wire.

2.9 Review questions
Q. 2.1 The validity of strong law of action and reaction is required for the conservation of

.
Q. 2.2 The space spanned by the generalised coordinates is known as space.
Q. 2.3 What are constraints?
Q. 2.4 Derive Lagrange’s equations using D’Alembert’s principle.
Q. 2.5 Set up the Lagrangian for a simple pendulum and obtain an equation of motion.
Q. 2.6 A mass M2 hangs at one end of a string that passes over a fixed, frictionless, non-rotating

pulley. At the other end of this string, there is another non-rotating pulley of mass M1, over
which a second string carries masses m1 and m2, as illustrated in Figure 2.9(b). Set up the
Lagrangian for this system and determine the acceleration of the mass M2.

Q. 2.7 Two identical masses m are connected by springs having equal spring constants, as shown
in figure below (Figure 2.11), so that the masses are free to slide on a frictionless AB. The

Figure 2.11: Two identical masses m are connected by springs having equal spring constants.

walls at A and B to which the ends of the springs are attached are fixed. Construct the
Lagrangian and deduce the equations of motion.

Q. 2.8 Construct a Lagrangian and deduce the equation of motion for the compound pendulum
illustrated in Figure 2.12, which oscillates in a vertical plane about a fixed perpendicular
axis passing through O.

Q. 2.9 A bead slides without friction under the influence of gravity on a frictionless wire in
the shape of a cycloid as illustrated in Figure 2.13 with equations. x = a(θ − sinθ) and
y = a(1+ cosθ), where 0 ≤ θ ≤ 2π . Find the Lagrangian and obtain the equation of
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O

C

hθ

Mg

x

y

Figure 2.12: Illustration of a compound pendulum.

x

y

m
2a

Figure 2.13: Illustration of a bead sliding without friction under the influence of gravity on a
frictionless wire shaped like a cycloid.

motion. Also, show that the equation of motion can be represented as
d2u
dt2 +

g
4a

u = 0 using

the transformation u = cos
θ

2
.

Q. 2.10 The Lagrangian of a point mass m falling freely from rest by gravity is given by

L =
1
2

mẏ2 +mgy,

with g being the acceleration due to gravity. Deduce the equation of motion.
Q. 2.11 A particle of mass m moves under the influence of gravity on the frictionless inner surface

of the paraboloid of revolution ρ2 = az, where ρ2 = x2+y2. Obtain the equations of motion.
(i) Identify the generalized coordinates and construct the Lagrangian and (ii) obtain the
equations of motion.

Q. 2.12 State whether the force force F =−3a
r4 , where a is constant, is a central force or not. Find

the potential.
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Q. 2.13 Show that if not all the forces are derivable from a potential, then

d
dt

(
∂L
∂ q̇ j

)
− ∂L

∂q j
= Q j, (2.105)

where L contains the potential of the conservative forces, and Q j represents the forces
that are not arising from a potential. Prove that the above Lagrange equation (2.105) is
equivalent to

∂ L̇
∂ q̇ j

−2
∂L
∂q j

= Q j. (2.106)

Q. 2.14 The Lagrangian L =
1
2

q̇2 +qq̇− 1
2

q2 corresponds to system.
Q. 2.15 A bead is constrained to slide on a frictionless rod that is fixed at an angle θ with a vertical

Figure 2.14: Illustration of a bead constrained to slide on a frictionless rod.

axis and is rotating with angular frequency ω , about the axis as show in Figure 2.14. Taking
the distance s along the rod as variable, construct the Lagrangian of the bead.

2.10 Reference
[1] H. Goldstein, J. L. Safko, and C. P. Poole. Classical Mechanics, 3e. Pearson Education, 2011.
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