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Uniqueness Theorem
• Laplace equation does not itself determine the potential and 

hence a suitable boundary condition is required

Using Gauss divergence theorem

Using vector identity
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• Uniqueness theorem states that “Laplace’s equation satisfying 
given boundary conditions have one and only one (unique) 
solution”

• Consider a closed volume V0 exterior to the surfaces S1, S2…Sn of 
the various conductors C1, C2…Cn and bounded on the outside by 
a surface S.



Let Φ1 and Φ2 be the solutions for given boundary conditions

Uniqueness Theorem

න
𝑆1+𝑆2+𝑆3+⋯+𝑆𝑛

∅𝛻∅. 𝑑𝑆 = න
𝑉𝑜

𝛻∅ 2. 𝑑𝑉

Using Laplace’s equation at all points in V0

න
𝑆

∅1 − ∅2 𝛻 ∅1 − ∅2 . 𝑑𝑆 = න
𝑉𝑜

𝛻 ∅1 − ∅2
2
. 𝑑𝑉

𝑊ℎ𝑒𝑛, ∅1 = ∅2 ; 𝛻∅1 = 𝛻∅2

න
𝑉𝑜

𝛻 ∅1 − ∅2
2
. 𝑑𝑉 = 0 𝛻 ∅1 − ∅2 = 0 𝛻∅1 = 𝛻∅2

∅1 = ∅2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

Thus the potentials can differ at most by an additive constant for a given 
boundary condition which makes no contribution to gradient. Thus for 
given boundary condition, Laplace equation has unique solution.



Boundary Conditions
• To solve the given Poisson (or Laplace) equation, a suitable

boundary condition is required to establish a unique and valued
solution inside the bounded region.

• There are two possible boundary conditions,

• Dirichlet boundary condition in which the potential on a closed
surface S is defined as,

• Neumann boundary condition in which the electric field (normal
derivative of potential) everywhere on the surface is defined as,

• As mentioned in Uniqueness theorem, the solution of Laplace or
Poisson equations are unique when they are subjected to the
above boundary conditions

∅ 𝑟 𝑟𝑒𝑠 = 𝑓 𝑟

𝒏. 𝛻∅ 𝑟 𝑟𝑒𝑠 =
𝜕∅

𝜕𝑛𝑟𝑒𝑠
= 𝑔 𝑟



Green’s Reciprocity Theorem
• Consider a set of n point charges qi placed at points where the potential 

due to other charges are given by φj. The potential at jth point due to 
charges qi at other point is

• The potential at jth point due to charges qi‘ at other point is

• Multiplying qj‘ by eqn. 1 and qj by eqn. 2 and summing over index j is

• Interchanging summation indices

This is Green’s reciprocity theorem which is useful to transform the solution 
of a known problem into the solution of undesired unknown problem. 
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Green’s Reciprocity Theorem
• To handle the boundary conditions it is necessary to develop some 

new mathematical tools, called as Green’s identities or theorems.

• If φ and ψ are arbitrary scalar fields 𝑨 = 𝛷𝛁𝛹 then,

𝛻. 𝑨 = 𝛻. 𝛷𝛻𝛹 = ∅𝛻2𝛹 + 𝛻∅𝛻𝛹 𝐀. ෝ𝒏 = 𝛷𝛻𝛹 . ෝ𝒏 = 𝛷
𝜕𝛹

𝜕n

• Substituting the above in Gauss’s divergence theorem gives 
Green’s first identity,

න ∅𝛻2𝛹 + 𝛻∅𝛻𝛹 𝑑𝑣 = න𝛷
𝜕𝛹

𝜕n
𝑑𝑠

න 𝛹𝛻2∅ + 𝛻𝛹𝛻∅ 𝑑𝑣 = න𝛹
𝜕∅

𝜕n
𝑑𝑠 න ∅𝛻2𝛹 −𝛹𝛻2∅ 𝑑𝑣 = න 𝛷

𝜕𝛹

𝜕n
− 𝛹

𝜕∅

𝜕n
𝑑𝑠

• Interchanging scalar field and subtracting with above equation 
gives Green’s second identity,

• By Gauss’s Divergence theorem, ׬𝛻. 𝑨 𝑑𝑣 = .𝐀׬ ෝ𝒏 𝑑𝑠



Formal solution of Potential with Green’s Function

𝑮 𝒓, 𝒓′ = 𝑮 𝒓′, 𝒓

• With aid of Green’s reciprocity theorem, it can be shown that
Green’s function for a particular unit charge at point r’ and point of
observation r is a symmetric function and allow interchangeability

• Let φ be the desired solution and ψ=G be the Green’s function. 
Then
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1
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1

𝑟 − 𝑟′
+ 𝐹 𝑟, 𝑟′ Potential due to the induced 

charge on surface S
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1
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−𝛿 𝑟 − 𝑟′

𝜀0
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• Here



න ∅ 𝑟′ 𝛻2𝐺 𝑟, 𝑟′ − 𝐺 𝑟, 𝑟′ 𝛻2∅ 𝑟′ 𝑑𝑣 = න 𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ − 𝐺 𝑟, 𝑟′ 𝛻𝛷 𝑟′ 𝑑𝑠

න −∅ 𝑟′
𝛿 𝑟 − 𝑟′

𝜀0
− 𝐺 𝑟, 𝑟′ 𝛻2∅ 𝑟′ 𝑑𝑣 = න 𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ − 𝐺 𝑟, 𝑟′ 𝛻𝛷 𝑟′ 𝑑𝑠

−∅ 𝑟′

𝜀0
−න𝐺 𝑟, 𝑟′ 𝛻2∅ 𝑟′ 𝑑𝑣 = න 𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ − 𝐺 𝑟, 𝑟′ 𝛻𝛷 𝑟′ 𝑑𝑠

∅ 𝑟′ = −𝜀0න𝐺 𝑟, 𝑟′ 𝛻2∅ 𝑟′ 𝑑𝑣 − 𝜀0න 𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ − 𝐺 𝑟, 𝑟′ 𝛻𝛷 𝑟′ 𝑑𝑠

∅ 𝑟 = −𝜀0න𝐺 𝑟, 𝑟′ 𝛻2∅ 𝑟′ 𝑑𝑣 − 𝜀0න𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ 𝑑𝑠

• Apply Dirichlet boundary condition to ensure the uniqueness of 
potential on surface S G(r, r’) =0, r’on S  

Formal solution of Potential with Green’s Function



• Case I : The surface surrounding the point r’ is grounded  

𝛷 𝑟′ = 0 𝛻2∅ 𝑟′ =
−𝜌 𝑟′

𝜀0

∅ 𝑟 = න𝐺 𝑟, 𝑟′ 𝜌 𝑟′ 𝑑𝑣

• Case II : When there are no sources of φ throughout the volume  

𝛻2∅ 𝑟′ = 0

∅ 𝑟 = −𝜀0න𝛷 𝑟′ 𝛻𝐺 𝑟, 𝑟′ 𝑑𝑠

• In both cases the potential within a region enclosed by a boundary
is obtained. In the first case potential is expressed in terms of
volume integral and second case potential is expressed in terms of
surface integral

Formal solution of Potential with Green’s Function



Beyond Green’s Theorem

• For most of the electrostatic problems, Green’s theorem 
can be applied as either boundary surface potential or 
surface charge density is specified.

Point Charge

Continuous 
Charge 

Distribution

Gauss Law

Arbitrary Charge 
Distribution

Laplace/Poisson 
Equation

Boundary 
conditions

Green’s theorem

• However in real situations, if Green’s function is difficult to 
identify, three techniques are available to solve boundary 
value problems

– Method of images

– Expansion in orthogonal function

– Finite element analysis (FEA)



Method of Images

• Lord Kelvin (1824-1907) invented method of images to solve many 
special electrostatics problems.

• Complicated charge distribution are replaced by a single or set of 
point charges without affecting the boundary conditions of the 
problem.

• It is the process of placing a image charge in place of complicated 
charge distribution such that their electrical effects for the given 
boundary conditions remains the same.



Method of Images

• Potential due to n point charges (q1, q2…qn) at any point is

• Potential due to surface of zero potential

• System of charges q1, q2…qj and grounded conductor which was 
replaced by system of image charges qj+1, qj+2…qn

• A point charge placed in front of a 
conducting mirror having zero potential
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A point charge in front of a conducting sphere which
is grounded

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

• Boundary Conditions

o Electric potential at surface is zero. Φ = 0, r = R

o Electric potential at infinity is zero. Φ = 0, r = ∞

• Consider a image charge (q’) placed at B such that it satisfies B.C.



A point charge in front of a conducting sphere which
is grounded

• Boundary Conditions

o Electric potential at surface is zero. 
Φ = 0, r = R

o Electric potential at infinity is zero. 
Φ = 0, r = ∞

• Consider a image charge (q’) placed 
at B such that it satisfies B.C.

• Potential due to real and image 
charge at P’ is

B A

P(r,θ)

qq'

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

∅ 𝑃′ =
1

4𝜋𝜀0

𝑞

𝐴𝑃′
+

𝑞′

𝐵𝑃′
= 0

𝑞′ = −𝑞
𝐵𝑃′

𝐴𝑃′

From congruent triangles, ∆𝑂𝑃′𝐵 ≈ ∆𝑂𝑃′𝐴,
𝑂𝐵

𝑂𝑃′
=
𝑂𝑃′

𝑂𝐴
, 𝑂𝐵 =

𝑅2

𝑑



A point charge in front of a conducting sphere which
is grounded

𝐼𝑛 ∆𝑂𝐴𝑃′, 𝐴𝑃′ 2 = 𝑂𝑃′ 2 + 𝑂𝐴 2 − 2𝑂𝑃′. 𝑂𝐴 cos 𝜃

𝐴𝑃′ = 𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃

𝐼𝑛 ∆𝑂𝐵𝑃′, 𝐵𝑃′ 2 = 𝑂𝑃′ 2 + 𝑂𝐵 2 − 2𝑂𝑃′. 𝑂𝐵 cos 𝜃

𝐵𝑃′ = 𝑅2 + 𝑏2 − 2𝑅𝑏 cos 𝜃

𝑞′ = −𝑞
𝑅2 + 𝑏2 − 2𝑅𝑏 cos 𝜃

𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 𝑞′ = −𝑞

𝑅2 +
𝑅2

𝑑

2

− 2𝑅
𝑅2

𝑑
cos 𝜃

𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃

𝑞′ = −𝑞
𝑅

𝑑

Image charge is placed at a distance of 𝑏 =
𝑅2

𝑑
from centre of spherical

conductor along line joining the centre of sphere and real point charge.

O d A

P’(R,θ)

O B

P’(R,θ)

b



A point charge in front of a conducting sphere which
is grounded

Potential at point P due to point charge +q placed near grounded
conducting sphere is

∅ 𝑃 =
1

4𝜋𝜀0

𝑞

𝐴𝑃
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The component of electric field at P is
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𝑟2𝑑2

𝑅2
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−𝜕∅

𝑟. 𝜕𝜃
=

𝑞
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A point charge in front of a conducting sphere which
is grounded

Surface charge density is

The force between the sphere and point charge is

Negative sign indicate the force is attractive in nature.

𝜎 = 𝜀0 𝐸𝑟 𝑟=𝑅 =
𝑞

4𝜋𝑅

𝑅2 − 𝑑2

𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 ൗ3 2

𝐹 =
1

4𝜋𝜀0

𝑞𝑞′

𝐴𝐵 2
= −

1

4𝜋𝜀0

𝑞2𝑅𝑑

𝑑2 − 𝑅2 2

q

F

q'

q

𝐸𝑟 =
−𝜕∅

𝜕𝑟
𝑟=𝑅

=
𝑞

4𝜋𝜀0𝑅

𝑅2 − 𝑑2

𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 ൗ3 2
= 0

Electric field at the surface of sphere is



A point charge in front of a conducting sphere which
is insulated

• Boundary Conditions
o Electric potential at surface is zero. Φ = 

0, r = R

o Electric potential at infinity is zero. Φ = 
0, r = ∞

o Potential on sphere is uniform 
throughout.

oNet charge on conductor remains zero.

Consider a image charge (q’) placed at B such that it satisfies first and 
second boundary conditions. 

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

P2

q''

r2
r1

P1

To satisfy the remaining boundary conditions, consider a charge (q”) 
at centre of sphere so that it provides zero net charge and keeps the 
potential constant.



A point charge in front of a conducting sphere which
is insulated

• Boundary Conditions
o Electric potential at surface is zero. Φ = 

0, r = R

o Electric potential at infinity is zero. Φ = 
0, r = ∞

o Potential on sphere is uniform 
throughout.

oNet charge on conductor remains zero.

The potential on the spherical surface is ∅ =
ൗ𝑞𝑅
𝑑

4𝜋𝜀0𝑅
=

𝑞

4𝜋𝜀0𝑑

∅ 𝑃 =
1

4𝜋𝜀0

𝑞

𝑟1
+
𝑞′

𝑟2
+
𝑞′′

𝑟
𝑞′ =

−𝑞𝑅

𝑑
𝑞′′ =

𝑞𝑅

𝑑

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

P2

q''

r2
r1

P1

The potential at point P due to combination of point charge +q and 
insulated charged sphere is



A point charge in front of a conducting sphere which
is insulated
Force of attraction between the conducting sphere due to induced
charge and the point charge q must be the resultant of the force
between q and q’ at B and q and q’’ at O.

𝐹 =
−1

4𝜋𝜀0

𝑞.
𝑞𝑅
𝑑

𝑑 −
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𝐹 =
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𝑞2𝑅

𝑑3
1

1 −
𝑅2

𝑑2

− 1

O B A

qq'q'' FAB

FAO

Surface charge density at P’ due to q
and q’ is

Surface charge density at P’
due to q’’ is

𝜎1 =
−𝑞 𝑑2 − 𝑟2

4𝜋𝑅 𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 ൗ3 2 𝜎2 =
ൗ𝑞𝑅
𝑑

4𝜋𝑅2

𝜎 = 𝜎1 + 𝜎2 =
−𝑞 𝑑2 − 𝑅2

4𝜋𝑅 𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 ൗ3 2
+

𝑞
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A point charge in front of a conducting sphere which
is insulated

At P1 nearest to q is [θ= 0o]

𝜎𝑃1 =
−𝑞 𝑑2 − 𝑅2

4𝜋𝑅 𝑅2 + 𝑑2 − 2𝑅𝑑 ൗ3 2
+

𝑞

4𝜋𝑅𝑑

𝜎𝑃1 𝜃=0𝑜
=

𝑑2 − 𝑅2

𝑑 − 𝑅 3 −
1

𝑑

−𝑞

4𝜋𝑅
=

−𝑞 3𝑑 − 𝑅

4𝜋𝑑 𝑑 − 𝑅 2

At P2 farthest to q is [θ= 180o]

𝜎𝑃2 𝜃=180𝑜
=

𝑞 3𝑑 + 𝑅

4𝜋𝑑 𝑑 + 𝑅 2

Surface charge density at nearest and farthest is negative and positive.
There must be a place where surface charge density is zero, called as
circle of no electrification.

O B A

qq'

P2

q''

P1



A point charge in front of a conducting sphere which
is charged and insulated

• Boundary Conditions

oPotential on sphere is uniform 
throughout.

oNet charge on conductor remains +e.

o Electric potential at infinity is zero. Φ = 
0, r = ∞

o𝛻 2∅ = 0 in external space expect A

Consider a image charge (q’) placed at B such that it satisfies first and 
second boundary conditions. 

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

P2

q''

r2
r1

P1

To satisfy the remaining boundary conditions, consider a charge (q”) 
at centre of sphere so that it provides +e charge.



A point charge in front of a conducting sphere which
is charged and insulated

• Boundary Conditions

oPotential on sphere is uniform 
throughout.

oNet charge on conductor remains +e.

o Electric potential at infinity is zero. Φ = 
0, r = ∞

o𝛻 2∅ = 0 in external space expect A

O B A

P(r,θ)

P’(R,θ)

qq'

OA=d
OB=b
OP’=R

P2

q''

r2
r1

P1

∅ =
𝑒 + ൗ𝑞𝑅

𝑑
4𝜋𝜀0𝑅

=
1

4𝜋𝜀0

𝑒

𝑅
+
𝑞

𝑑

∅ 𝑃 =
1

4𝜋𝜀0

𝑞

𝑟1
+
𝑞′

𝑟2
+
𝑞′′

𝑟 𝑞′ =
−𝑞𝑅

𝑑
𝑞′′ = 𝑒 +

𝑞𝑅

𝑑

The potential on the spherical surface is

The potential at point P due to combination of point charge +q and 
charged and insulated charged sphere is



A point charge in front of a conducting sphere which
is insulated and charged
Force of repulsion between the conducting sphere due to induced
charge and the point charge q must be the resultant of the force
between q and q’ at B and q and q’’ at O.

O B A

qq'q'' FAB

FAO

If A is very near to spherical surface, put d = R + x

𝐹 =
1

4𝜋𝜀0

−𝑞.
𝑞𝑅
𝑑

𝑑 −
𝑅2

𝑑

2 +
1

4𝜋𝜀0

𝑞. 𝑒 +
𝑞𝑅
𝑑

𝑑2

𝐹 =
1

4𝜋𝜀0

𝑒𝑞

𝑑2
+
𝑞2𝑅

𝑑3
−

𝑞2𝑅𝑑

𝑑2 − 𝑅2 2

𝐹 =
1

4𝜋𝜀0

𝑒𝑞

𝑅 + 𝑥 2 +
𝑞2𝑅

𝑅 + 𝑥 3 −
𝑞2𝑅𝑑

𝑅 + 𝑥 2 − 𝑅2
2

Here when x is negligibly small

𝑅 + 𝑥 2 = 𝑅2; 𝑅 + 𝑥 3 = 𝑅3; 𝑅 + 𝑥 2 − 𝑅2
2
= 2𝑅 + 𝑥 2𝑥2



A point charge in front of a conducting sphere which
is insulated and charged

For the force to be repulsive, F must be positive.

𝐹 =
1

4𝜋𝜀0

𝑒𝑞

𝑅2
+
𝑞2𝑅

𝑅3
−

𝑞2𝑅𝑑

2𝑅 + 𝑥 2𝑥2
𝐹 =

1

4𝜋𝜀0

𝑞 𝑞 + 𝑒

𝑅2
−

𝑞2

4𝑥2

𝑞 𝑞 + 𝑒

𝑅2
>

𝑞2

4𝑥2
𝑒 > 𝑞

𝑅2

4𝑥2
− 1 𝑒 >

𝑞𝑅2

4𝑥2
𝑥 >

𝑅

2

𝑞

𝑒

𝜎 =
−𝑞 𝑑2 − 𝑅2

4𝜋𝑅 𝑅2 + 𝑑2 − 2𝑅𝑑 cos 𝜃 ൗ3 2
+

𝑒 +
𝑞𝑅
𝑑

4𝜋𝑅2

𝜎𝑃1 𝜃=0𝑜
=

−𝑞 𝑑2 − 𝑅2

4𝜋𝑅 𝑅2 + 𝑑2 − 2𝑅𝑑 ൗ3 2
+

𝑒 +
𝑞𝑅
𝑑

4𝜋𝑅2
=

−𝑞 𝑑 − 𝑅

4𝜋𝑅 𝑑 − 𝑅 2 +
𝑒

4𝜋𝑅2

𝜎𝑃2 𝜃=180𝑜
=

−𝑞 𝑑2 − 𝑅2

4𝜋𝑅 𝑅2 + 𝑑2 + 2𝑅𝑑 ൗ3 2
+

𝑒 +
𝑞𝑅
𝑑

4𝜋𝑅2
=

𝑞 3𝑑 + 𝑅

4𝜋𝑅 𝑑 + 𝑅 2 +
𝑒

4𝜋𝑅2

Surface charge density at P’ due to q and q’ and q” is



Conducting sphere in a uniform electric field

• Consider a conducting sphere of radius R in a uniform electric 
field E0. A uniform electric filed can be produced by positive and 
negative charges at infinity.

-q +q

E0

Z=+dZ=-d O

-q

+q
Z=+dZ=-d

O

P(r,θ)

Z=-R2/d

qR/d

Z=R2/d
-qR/d

∅ 𝑃

=
1

4𝜋𝜀0
൦

൪

𝑞

𝑟2 + 𝑑2 + 2𝑟𝑑 cos 𝜃
−

𝑞

𝑟2 + 𝑑2 − 2𝑟𝑑 cos 𝜃
−

ൗ𝑞𝑅
𝑑

𝑟2 +
𝑅4

𝑑2
+
2𝑅2𝑟
𝑑

cos 𝜃

+
ൗ𝑞𝑅
𝑑

𝑟2 +
𝑅4

𝑑2
−
2𝑅2𝑟
𝑑

cos𝜃

• Potential at any field due to charge +q,-q and their images is



Conducting sphere in a uniform electric field

𝑞

𝑟2 + 𝑑2 + 2𝑟𝑑 cos 𝜃
=
𝑞

𝑑
1 +

𝑟2

𝑑2
+
2𝑟

𝑑
cos 𝜃

ൗ−1
2

=
𝑞

𝑑
1 −

𝑟

𝑑
cos 𝜃

𝑞

𝑟2 + 𝑑2 − 2𝑟𝑑 cos 𝜃
=
𝑞

𝑑
1 +

𝑟

𝑑
cos 𝜃

ൗ𝑞𝑅
𝑑

𝑟2 +
𝑅4

𝑑2
+
2𝑅2𝑟
𝑑

cos 𝜃

=
𝑞𝑅

𝑑
1 −

𝑅2

𝑟𝑑
cos 𝜃

ൗ𝑞𝑅
𝑑

𝑟2 +
𝑅4

𝑑2
−
2𝑅2𝑟
𝑑

cos 𝜃

=
𝑞𝑅

𝑑
1 +

𝑅2

𝑟𝑑
cos 𝜃



Conducting sphere in a uniform electric field

∅ 𝑟, 𝜃 =
1

4𝜋𝜀0

−2𝑞

𝑑2
𝑟 cos 𝜃 +

2𝑞

𝑑2
𝑅3

𝑟2
cos 𝜃

∅ 𝑟, 𝜃 = −𝐸0 𝑟 −
𝑅3

𝑟2
cos 𝜃

∅ 𝑃 = −𝐸0𝑧 + 𝐸0
𝑅3𝑧

𝑟3

𝜎 = 𝜀0 𝐸𝑟 𝑟=𝑅 = −𝜀0
𝜕∅

𝜕𝑟
== −𝜀0𝐸0 cos 𝜃

Potential at P due to point charge and sphere is 

Potential due to uniform electric field and induced surface charge 
density, as Z= r cos θ



A point charge near an infinite grounded conducting
plane

• Boundary Conditions

o Electric potential at surface is zero. Φ = 0, x =0

o Electric potential at infinity is zero. Φ = 0, x = ∞

r

r

P(0,y,z)

-q +q

O

P’ (x,y,z)

A(d,0,0)A’(-d,0,0)
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