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What is Magnetostatics?

Stationary charges – Creates constant electric field
Charges in steady motion – Steady current

Steady current – Creates constant magnetic field

Magnetostatics means constant

B



Moving from Electrostatics to Magnetostatics

Particulars Electrostatics Magnetostatics

Force
Coulomb’s Law 
(static charges)

Ampere’s Law
(current elements)

Electric Field Gauss’s Law Biot-Savart’s Law

Integral 
Statement

Gauss’s law
(Coulomb’s law)

Ampere’s circuital law 
(Ampere’s law)

Divergence div E = -ρ/ϵ0 div B = 0

Curl curl E = 0 curl B = µ0J

Potential Scalar Vector

BE



Lorentz Force Law

Anti-parallel 
current repels wire

Parallel current 
attracts wire

F

B



Lorentz Law: Force on Current Carrying Conductor
Force exerted by a current element δl carrying current I
situated in magnetic field induction B is δFm. For whole length
each element is at right angels at B. The magnetic force on
the conductor is

𝑭𝒎 =𝜹𝑭𝒎 =𝐼𝛿𝒍 𝑋 𝑩 = 𝐼𝑙𝐵 sin 𝜃 ො𝑛 = 𝐼𝑙𝐵 ො𝑛

Consider a conductor of cross-sectional area A carrying
current I and current density J, with each carrier moving with
velocity v placed in magnetic field B. If n is number of
charges, total current flowing in conductor is

𝑰 = 𝑱. 𝑨 = 𝑛𝑞𝒗. 𝑨

𝜹𝑭𝒎 = 𝑛𝑞𝒗. 𝑨 𝛿𝒍 𝑋 𝑩 = 𝑛𝑞𝛿𝒍. 𝑨 𝒗 𝑋 𝑩

A

v

J

dl



Lorentz Law: Force on Current Carrying Conductor

In the presence of both electric and magnetic field is

If Q moves through a distance dl and the work done by magnetic force is

As v x B is perpendicular to v, here (v x B)=0

𝑭 = 𝑭𝒆 + 𝑭𝒎 = 𝑞 𝑬 + 𝒗 𝑋 𝑩

𝒅𝑾𝒎𝒂𝒈 = 𝑭𝒎𝑑𝒍 = 𝑞 𝒗 𝑋 𝑩 . 𝒗𝑑𝑡

𝒅𝑾𝒎𝒂𝒈 = 0

Magnetic force do no work. It just alters the direction in which a particle
moves, but never stop or speed them.

The magnetic force known as Lorentz force by single carrier is

𝑭𝒎 =
𝜹𝑭𝒎
𝑛𝛿𝒍. 𝑨

=
𝑛𝑞𝛿𝒍. 𝑨 𝒗 𝑋 𝑩

𝑛𝛿𝒍. 𝑨
𝑭𝒎 = 𝑞 𝒗 𝑋 𝑩



Biot-Savart Law

In reality as moving charges do not create steady current, in

magnetostatics, it is assumed that ൗ𝜕𝜌
𝜕𝑡 = 0 , with equation of

continuity as 𝛁. 𝑱 = 0

In electrostatics, the force exerted by a charge configuration upon
charge Q is F=QE. Similarly in magnetostatics, the force exerted is

dB1 is the magnetic induction or magnetic
flux density which represents the magnetic
field produced by current element dl1. This is
Biot-Savart’s law.

𝑑𝑭12 = 𝐼2𝑑𝒍2𝑋𝑑𝑩1 𝑑𝑩1 =
𝜇

4𝜋

𝐼1𝑑𝒍1𝑋𝒓12

𝑟12
3

𝑑𝑩1 =
𝜇

4𝜋

𝐼1𝑑𝒍1 sin 𝜃

𝑟12
2 𝑊 Τ𝑏 𝑚2

P

I1

dl1
𝜃

𝑟12



Biot-Savart Law

For a closed loop, the resultant magnetic induction at P is

If J1 is current density,

𝐼1𝑑𝒍1 = 𝑱1𝑑𝑣

𝑩1 =
𝜇

4𝜋
ර
𝐼1𝑑𝒍1𝑋𝒓12

𝑟12
3

𝑩1 =
𝜇

4𝜋
ර
𝑱1𝑋𝒓12

𝑟12
3 𝑑𝑣

Thus Biot-Savart law is convenient to evaluate magnetic
induction.

P

I1

dl1 𝜃

𝑟12

The resultant magnetic induction at P is

𝑩1 = න𝑑𝑩1 =
𝜇

4𝜋
න
𝐼1𝑑𝒍1𝑋𝒓12

𝑟12
3



Ampere’s Law of Force Between Current Elements
Ampere proposed a general statement to find the force between
current elements by performing a series of experiment.

Consider two current elements dl1 and dl2 carrying steady currents I1

and I2. The force between two current elements is

i) directly proportional to magnitude of current

ii) inversely proportional to square of distance
between current elements

iii) directly proportional to the length and
orientation of two current elements

iv) nature of the medium

Force exerted by dl1 upon dl2 is

𝑑𝑭12 = 𝐶 𝐼1𝐼2
1

𝑟12
2 𝑑𝒍2𝑋𝑑𝒍1𝑋

𝒓12
𝑟12

Here 
𝒓12

𝑟12
represents unit vector along r12

I1

dl1

𝑟12

I2

dl2

𝑑𝑭12 =
𝜇

4𝜋

𝐼2𝑑𝒍2 𝑋 𝐼1𝑑𝒍1𝑋𝒓12

𝑟12
3



Ampere’s Law of Force Between Current Elements
Force exerted by dl2 upon dl1 is

The above two equations are known as Ampere’s law of force between
two current elements. It resembles Coulomb’s law

This equations appear to contradict Newton’s III law, as I1dl1 and I2dl2 are
not symmetric, 𝑑𝑭21 ≠ 𝑑𝑭21

To overcome the contradiction, consider closed loops C1 and C2 instead
of current element. Force exerted by C1 upon C2 and C2 upon C1 is

I1

dl1
𝑟12

I2

dl2
C2C1

𝑑𝑭21 =
𝜇

4𝜋

𝐼1𝑑𝒍1 𝑋 𝐼2𝑑𝒍2𝑋𝒓21

𝑟21
3

𝑭12 =
𝜇

4𝜋
ර
𝐶1

ර
𝐶2

𝐼2𝑑𝒍2 𝑋 𝐼1𝑑𝒍1𝑋𝒓12

𝑟12
3

𝑭21 =
𝜇

4𝜋
ර
𝐶1

ර
𝐶2

𝐼1𝑑𝒍1 𝑋 𝐼2𝑑𝒍2𝑋𝒓21

𝑟21
3



Ampere’s Law of Force Between Current Loops
Using vector triple product identity, 𝒂 𝑋 𝒃 𝑋 𝒄 = 𝒂. 𝒄 𝒃 − 𝒂. 𝒃 𝒄

𝑭12 =
𝜇

4𝜋
ර
𝐶1

ර
𝐶2

𝐼1𝐼2

𝑟12
3 𝑑𝒍2. 𝒓12 𝑑𝒍1 − 𝑑𝒍2. 𝑑𝒍1 𝒓12

𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

ර
𝐶2

𝑑𝒍2. 𝒓12 𝑑𝒍1

𝑟12
3 =

−𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

𝑑𝒍1ර
𝐶2

𝛻2
1

𝑟12
𝑑𝒍2

d2
1

𝑟12
=

𝜕

𝜕𝑥2

1

𝑟12
𝑑𝑥2 +

𝜕

𝜕𝑦2

1

𝑟12
𝑑𝑦2 +

𝜕

𝜕𝑧2

1

𝑟12
𝑑𝑧2 = 𝛻2

1

𝑟12
𝑑𝒍2

𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

ර
𝐶2

𝑑𝒍2. 𝒓12 𝑑𝒍1

𝑟12
3 =

−𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

𝑑𝒍1ර
𝐶2

d2
1

𝑟12
= 0

𝑭12 =
−𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

ර
𝐶2

𝑑𝒍2. 𝑑𝒍1 𝒓12

𝑟12
3 𝑭21 =

−𝜇𝐼1𝐼2
4𝜋

ර
𝐶1

ර
𝐶2

𝑑𝒍2. 𝑑𝒍1 𝒓21

𝑟21
3

𝑭21 = −𝑭12𝒓12 = −𝒓21 Thus Ampere’s law for current loop is
considered instead of current elements



Ampere’s Law in Circuital Form
Consider a long wire carrying current I, produces a magnetic field
induction B. The magnetic induction at any point P on the circular path
of radius r is

𝑩 =
𝜇𝐼

2𝜋𝑟

At every point B is same and is parallel to
the tangent of circular path. The line integral
of the magnetic induction around the
circular path is

ර𝑩. 𝑑𝒍 = ර
𝜇𝐼

2𝜋

𝑟 𝑑𝜃

𝑟
== ර

𝜇𝐼

2𝜋
𝑑𝜃 =

𝜇𝐼

2𝜋
2𝜋

ර𝑩. 𝑑𝒍 = 𝜇𝐼

The sign of the integral depends on the direction of circle encircled. The
sign is positive, if path of line integral is parallel to B and is negative, if
path of line integral is anti-parallel to B

P

I1

dl

𝑟

𝑑𝜃

BI



Ampere’s Law in Circuital Form
If the path enclosing current is not circular but irregular, then it can be
divided into small elements of length dl, then for a small element,

The line integral of the magnetic induction
along the whole path is

When the closed path does not enclose current,
consider a current I and neighbouring closed
path which does not enclose any current. The
path is divided into large number of small
elements. Draw two lines OA, OB making an
angle dθ cutting the arcs ab and cd of the path.

𝑩. 𝑑𝒍 =
𝜇0𝐼

2𝜋

𝑅 𝑑𝜃

𝑅
=
𝜇0𝐼

2𝜋
𝑑𝜃

ර𝑩. 𝑑𝒍 =
𝜇0𝐼

2𝜋
ර𝑑𝜃 =

𝜇0𝐼

2𝜋
2𝜋 = 𝜇0𝐼

This shows that Ampere’s law holds good for closed path of any shape.

P

dl
𝑟

𝑑𝜃

B
I

dl1

𝑑𝜃

dl2

r1

a

r2

b

c

d



Ampere’s Law in Circuital Form

The line integral of the magnetic induction
along the path abcd is dl1

𝑑𝜃

dl2

r1

a

r2

b

c

d
ර

𝑎𝑏𝑐𝑑

𝑩. 𝑑𝒍 = ර

𝑎𝑏

𝑩. 𝑑𝒍 + ර

𝑏𝑐

𝑩. 𝑑𝒍 + ර

𝑐𝑑

𝑩. 𝑑𝒍 + ර

𝑑𝑎

𝑩. 𝑑𝒍

The angle between dl and B is 90o. So

ර

𝑏𝑐

𝑩. 𝑑𝒍 = ර

𝑑𝑎

𝑩. 𝑑𝒍 = 0

ර

𝑎𝑏𝑐𝑑

𝑩. 𝑑𝒍 = ර

𝑎𝑏

𝑩. 𝑑𝒍 + ර

𝑐𝑑

𝑩. 𝑑𝒍 == ර

𝑎𝑏

𝑩1. 𝑑𝒍1 cos 𝜃1 + ර

𝑐𝑑

𝑩2. 𝑑𝒍2 cos 𝜃2

ර

𝑎𝑏𝑐𝑑

𝑩. 𝑑𝒍 = ර

𝑎𝑏

𝜇0𝐼

2𝜋𝑟1
𝑑𝒍1 − ර

𝑐𝑑

𝜇0𝐼

2𝜋𝑟2
𝑑𝒍2



Ampere’s Law in Circuital Form

Thus Ampere’s law in circuital form is summarized as the line integral of
the magnetic induction around any closed path is equal to (i)
permeability multiplied by the current enclosed by the path and (ii) zero,
if the path does not enclose any current.

But,
𝑎𝑏

𝑟1
=
𝑐𝑑

𝑟2
= 𝑑𝜃

ර𝑩. 𝑑𝒍 = 0

ර𝑩. 𝑑𝒍 = ቊ
𝜇0𝐼, 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐼
0, 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑑𝑜𝑒𝑠𝑛𝑜𝑡 𝑒𝑛𝑐𝑙𝑜𝑠𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

ර

𝑎𝑏𝑐𝑑

𝑩. 𝑑𝒍 =
𝜇0𝐼

2𝜋

𝑎𝑏

𝑟1
−
𝑐𝑑

𝑟2



Divergence of Magnetic Induction

Biot-Savart’s law states that the line representing the direction of field
dB are circles about the axis of current element and thus form closed
curves. These lines do not start at(diverge from) any point nor do they
stop (converge toward) any point. Thus the fixed dB is source free or
solenoidal, that is divergence is zero.

𝑑𝑩 =
𝜇

4𝜋

𝐼𝑑𝒍 𝑋 𝒓

𝑟3

𝑩 =
𝜇

4𝜋
ර
𝐼𝑑𝒍 𝑋 𝒓

𝑟3

𝛻.𝑩 =
𝜇𝐼

4𝜋
𝛻.ර

𝑑𝒍 𝑋 𝒓

𝑟3

Since differentiation and integration are interchangeable,

𝛻.𝑩 =
𝜇𝐼

4𝜋
ර𝛻.

𝑑𝒍 𝑋 𝒓

𝑟3

I

I



Divergence of Magnetic Induction

Since dl is not a function of co-ordinate (x,y,z) of field point,

Using the vector identity, 𝛻. 𝒂 𝑋 𝒃 = 𝒃. 𝛻 𝑋 𝒂 − 𝒂. 𝛻 𝑋 𝒃

𝛻. 𝑑𝒍 𝑋
𝒓

𝑟3
=

𝒓

𝑟3
. 𝛻 𝑋 𝑑𝒍 − 𝑑𝒍. 𝛻 𝑋

𝒓

𝑟3

I

𝛻.𝑩 =
𝜇𝐼

4𝜋
ර

𝒓

𝑟3
. 𝛻 𝑋 𝑑𝒍 − 𝑑𝒍. 𝛻 𝑋

𝒓

𝑟3

𝛁 𝑋 𝑑𝒍 = 0

Here the curl of electric field due to a point charge,

𝛻 X 𝑬 = 𝛻 X
1

4𝜋𝜀0

𝑞𝒓

𝑟3
=

1

4𝜋𝜀0
𝛻 X

𝑞𝒓

𝑟3
= 0

𝛁.𝑩 = 𝟎

Thus the divergence of magnetic induction is always zero.



Curl of Magnetic Induction

If J is current density, then the total current I through S is

From Ampere’s law in circuital form,

From Stoke’s theorem,

For steady flow of charge with charge density ρ having velocity v is

ර𝑩. 𝑑𝒍 = 𝜇(𝑠𝑢𝑚 𝑜𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠 𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 𝑏𝑦 𝑝𝑎𝑡ℎ) = 𝜇𝐼

𝐼 = ඵ𝑱. 𝑑𝒂 ර𝑩. 𝑑𝒍 = 𝜇ඵ𝑱. 𝑑𝒂

ර𝑩. 𝑑𝒍 = ඵ𝛻 X 𝑩. 𝑑𝒂

ඵ𝛻 X 𝑩. 𝑑𝒂 = 𝜇ඵ𝑱. 𝑑𝒂 ඵ 𝛻 X 𝑩 − 𝜇𝑱 . 𝑑𝒂 = 0

Since surface S arbitrary, 𝛻 X 𝑩 − 𝜇𝑱 = 0 𝛻 X 𝑩 = 𝜇𝑱

𝛻 X 𝑩 = 𝜇0𝑱

𝛻 X 𝑩 = 𝜇𝜌𝒗

In free space,



Magnetic Vector Potential

In electrostatics, 𝛻 X 𝑬 = 0 permitted to introduce a scalar potential,
𝐄 = −𝛻 𝑉

If line integrals encircling any currents are considered, magnetic scalar
potential cannot be used and hence B can not be derived from scalar
magnetic potential. By Biot-Savart law, the magnetic induction due to a
current element is

In magnetostatics, 𝛻.𝑩 = 0 permitted to introduce a vector potential,
𝐁 = 𝛻 X 𝑨

𝑑𝑩 =
𝜇𝐼

4𝜋

𝑑𝒍 𝑋 𝒓

𝑟3

𝛻
1

𝑟
= Ƹ𝑖

𝜕

𝜕𝑥
+ Ƹ𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧

1

𝑥2 + 𝑦2 + 𝑧2 ൗ1 2
𝛻

1

𝑟
=
− 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧𝑘

𝑟3
=
−𝒓

𝑟3

𝑑𝑩 =
𝜇𝐼

4𝜋
𝑑𝒍 𝑋 −𝛻

1

𝑟
=
−𝜇𝐼

4𝜋
𝛻

1

𝑟
𝑋 𝑑𝒍



Magnetic Vector Potential

Using vector identity,

𝛻 𝑋 ∅𝑨 = 𝛻∅ 𝑋 𝑨 + ∅𝛻 𝑋 𝑨 𝛻∅ 𝑋 𝑨 = 𝛻 𝑋 ∅𝑨 − ∅𝛻 𝑋 𝑨

𝛻
1

𝑟
𝑋 𝑑𝒍 = 𝛻 𝑋

1

𝑟
𝑑𝒍 −

1

𝑟
𝛻 𝑋𝑑𝒍

𝑑𝑩 =
𝜇𝐼

4𝜋
𝛻 𝑋

𝑑𝒍

𝑟
−

1

𝑟
𝛻 𝑋𝑑𝒍

As 𝑑𝒍 is not a function of co-ordinate (x,y,z), 𝛻 𝑋𝑑𝒍 = 0

𝑑𝑩 =
𝜇𝐼

4𝜋
𝛻 𝑋

𝑑𝒍

𝑟

Total magnetic induction at any given point by a closed current loop is

𝑩 =
𝜇𝐼

4𝜋
ර 𝛻 𝑋

𝑑𝒍

𝑟



Magnetic Vector Potential

The quantity within the square bracket is a vector. By taking its curl, the
magnetic induction produced at any point by a closed loop carrying
current, the vector is obtained. This vector is known as magnetic vector
potential (A).

Using current density 𝑱 𝑑𝒗 = 𝑰 𝑑𝒍, the magnetic vector potential is

𝑩 = 𝛻 𝑋
𝜇𝐼

4𝜋
ර
𝑑𝒍

𝑟

𝑩 = curl 𝐀 = 𝛻 𝑋 𝑨

𝑨 =
𝜇𝐼

4𝜋
ර
𝑑𝒍

𝑟

𝑨 =
𝜇

4𝜋
ර
𝑱 𝑟 𝑑𝒗

𝑟

If the current element is at r’ instead of origin, then

𝑨 =
𝜇

4𝜋
ර
𝑱 𝑟′ 𝑑𝒗′

𝑟 − 𝑟′



Characteristics of Magnetic Vector Potential

(i) It satisfies Poissson’s equation

𝛁 𝑋 𝑩 = 𝜇0𝑱

𝑩 = 𝛁 𝑋 𝑨

𝛁 𝑋 𝛁 𝑋 𝑨 = 𝜇0𝑱

𝛁 𝛁. 𝑨 − 𝛁2𝑨 = 𝜇0𝑱

(ii) Scalar magnetic potential is

∅𝑚 = ර𝑨. 𝑑𝒍

∅𝑚 = ර𝑩. 𝑑𝑺

∅𝑚 = ර 𝛻 𝑋 𝑨 . 𝑑𝑺

∅𝑚 = ර𝑨. 𝑑𝒍

By definition,

Using Stoke’s theorem,

Since 𝛻. 𝑨 = 0, 𝛻2𝑨 = −𝜇0𝑱



Electrostatics Boundary Conditions

ρ

V E
𝐄 = − 𝜵𝑉

𝑉 = −න𝑬. 𝑑𝑙



Magnetostatics Boundary Conditions

J

A B
𝐁 = 𝜵 𝑋 𝑨 ; 𝛁. 𝑨 = 0



Magnetic Field of a Distant Current Loop

Consider a current loop carrying current I. Let I.dr’ be the current
element having position vector r’ with respect to origin. Then the vector
potential at a distance P having position vector r (r>>r’)

Applying Binomial expression and keeping only first order terms,

𝑨 =
𝜇0
4𝜋

ර
𝑰 𝑑𝒓′

𝒓 − 𝒓′

𝒓 − 𝒓′ = 𝑟 1 +
𝑟′2

𝑟2
−
2𝒓. 𝒓′

𝑟2

Τ1 2

𝑨 =
𝜇0𝑰

4𝜋𝑟
ර

𝑑𝒓′

1 +
𝑟′2

𝑟2
−
2𝒓. 𝒓′
𝑟2

Τ1 2

𝑨 =
𝜇0𝑰

4𝜋𝑟
ර𝑑𝒓′ 1 +

𝒓. 𝒓′

𝑟2
+⋯

𝒓 − 𝒓′ = 𝑟2 + 𝑟′2 − 2𝑟𝑟′ cos 𝜃 Τ1 2 = 𝑟2 + 𝑟′2 − 2𝒓. 𝒓′ Τ1 2

dr’ 

r-r’
P

r’ r

I
c’



Magnetic Field of a Distant Current Loop

For an arbitrary closed loop C’,

𝑨 =
𝜇0𝑰

4𝜋𝑟
ර𝑑𝒓′ +ර

𝒓. 𝒓′

𝑟2
𝑑𝒓′

ර𝑑𝒓′ = 0

𝑨 =
𝜇0𝑰

4𝜋𝑟
ර

𝒓. 𝒓′

𝑟2
𝑑𝒓′ =

𝜇0𝑰

4𝜋𝑟3
ර 𝒓. 𝒓′ 𝑑𝒓′

Using vector triple product, 𝒓 𝑋 𝑑𝒓′ 𝑋 𝒓′ = 𝒓. 𝒓′ 𝑑𝒓′ − 𝒓. 𝑑𝒓′ 𝒓′

Differentiating, 𝑑 𝒓′ 𝒓. 𝒓′ = 𝑑𝒓′ 𝒓. 𝒓′ + 𝒓′ 𝒓. 𝑑𝒓′

Adding above two equations, 𝒓 𝑋 𝑑𝒓′ 𝑋 𝒓′ + 𝑑 𝒓′ 𝒓. 𝒓′ = 2 𝒓. 𝒓′ 𝑑𝒓′

𝒓. 𝒓′ 𝑑𝒓′ =
1

2
𝒓 𝑋 𝑑𝒓′ 𝑋 𝒓′ +

1

2
𝑑 𝒓′ 𝒓. 𝒓′

𝑨 =
𝜇0𝑰

4𝜋𝑟3
ර
1

2
𝒓 𝑋 𝑑𝒓′ 𝑋 𝒓′ + ර

1

2
𝑑 𝒓′ 𝒓. 𝒓′



Magnetic Field of a Distant Current Loop

Since the integrand in the second integral is perfect differential, its
integral around a closed loop is zero.

Introducing a new quantity known as magnetic moment m,

𝑨 =
𝜇0𝑰

4𝜋𝑟3
ර
1

2
𝒓 𝑋 𝑑𝒓′ 𝑋 𝒓′

𝑨 =
𝜇0
4𝜋

1

2
ර𝒓′𝑋 𝑰 𝑑𝒓′ 𝑋

𝒓

𝑟3

𝒎 =
1

2
ර 𝒓′𝑋 𝑰 𝑑𝒓′

𝑨 =
𝜇0
4𝜋

𝒎𝑋 𝒓

𝑟3

Thus the magnetic induction is,

𝑩 = 𝑐𝑢𝑟𝑙 𝑨(𝑟) = 𝛻 𝑋
𝜇0
4𝜋

𝒎 𝑋 𝒓

𝑟3



Magnetic Field of a Distant Current Loop

This equation indicates that the magnetic field of a distant current
circuit does not depend upon its detailed geometry, but only on the
magnetic moment of the circuit, m.

𝑩 =
𝜇0
4𝜋

− 𝒎. 𝛻
𝒓

𝑟3
+𝒎 𝛻.

𝒓

𝑟3

𝛻.
𝒓

𝑟3
= 0 𝑚𝑥

𝜕

𝜕𝑥

𝒓

𝑟3
=
𝑚𝑥𝒊

𝑟3
− 3𝑚𝑥𝑥

𝒓

𝑟5

𝒎𝛻.
𝒓

𝑟3
=
𝒎

𝑟3
−

3 𝒎. 𝒓 𝒓

𝑟5

𝑩 𝒓 =
𝜇0
4𝜋

3 𝒎. 𝒓 𝒓

𝑟5
−
𝒎

𝑟3

The field is same as the electric field of dipole and hence the field is
called as magnetic dipole field.

𝑬 𝒓 =
1

4𝝅𝜺0

3 𝑷. 𝒓 𝒓

𝑟5
−

𝑷

𝑟3
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