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What is Magnetostatics?

- J

Stationary charges — Creates constant electric field
Charges in steady motion — Steady current

/A

Steady current — Creates constant magnetic field

Magnetostatics means constant



Moving from Electrostatics to Magnetostatics

m Electrostatics Magnetostatics

Force Coulomb’s Law Ampere’s Law

(static charges) (current elements)
Electric Field Gauss’s Law Biot-Savart’s Law
Integral Gauss’s law Ampere’s circuital law
Statement (Coulomb’s law) (Ampere’s law)
Divergence div E = -p/e, divB=0
Curl curlE=0 curl B = pgJ
Potential Scalar Vector

X ©



Lorentz Force Law

Anti-parallel
current repels wire

Parallel current
attracts wire




Lorentz Law: Force on Current Carrying Conductor

Force exerted by a current element &8l carrying current |
situated in magnetic field induction B is &F,. For whole length
each element is at right angels at B. The magnetic force on
the conductor is

Fm=Z§Fm=ZIcSlXB=IlBsin9ﬁ=IlBﬁ

Consider a conductor of cross-sectional area A carrying
current | and current density J, with each carrier moving with
velocity v placed in magnetic field B. If n is number of
charges, total current flowing in conductor is ‘ E A

I=].A=nqv.A
tv]a

6F,, = (nqu.A)6lX B = (nql.A)vX B < >

t




Lorentz Law: Force on Current Carrying Conductor

The magnetic force known as Lorentz force by single carrier is

6F,, (nqélA)vXB

Fm = st.a) = o)

F,,=qwXB)

In the presence of both electric and magnetic field is
F=F,+F_,=qlE+ (vXB)]

If Q moves through a distance dl and the work done by magnetic force is
AW g = Fndl = q(v X B).vdt

As v x B is perpendicular to v, here (v x B)=0

AW pag = 0

Magnetic force do no work. It just alters the direction in which a particle
moves, but never stop or speed them.



Biot-Savart Law

In reality as moving charges do not create steady current, in

magnetostatics, it is assumed that 6p/at =0, with equation of
continuityas V.J =0

In electrostatics, the force exerted by a charge configuration upon
charge Q is F=QE. Similarly in magnetostatics, the force exerted is

o Ldlh Xy,

3
41T 75

dFlZ —_ IzdlszBl dB1

flux density which represents the magnetic

d X
field produced by current element dl;. This is - >P
12
Biot-Savart’s law. \
Il

I,dl; sin @
ap, = £+ 241 W b/m?

dB, is the magnetic induction or magnetic \\
A

1= 2
41 5



Biot-Savart Law

The resultant magnetic induction at P is

U f11dl1xr12

3
41 75

Blzdelz

For a closed loop, the resultant magnetic induction at P is

po[LdlXr
Bl — 4 % 3

di,\ @ . p
If J, is current density, =

Ildll — lldv

fhxﬁz
51 = 4m >

Thus Biot-Savart law is convenient to evaluate magnetic
induction.




Ampere’s Law of Force Between Current Elements

Ampere proposed a general statement to find the force between
current elements by performing a series of experiment.

Consider two current elements dl, and dl, carrying steady currents |,
and |,. The force between two current elements is

i) directly proportional to magnitude of current dl, dl,

ii) inversely proportional to square of distance
between current elements

iii) directly proportional to the Ilength and
orientation of two current elements

iv) nature of the medium

Force exerted by dl, upon dl, is

1 r Ldl)X(I,dl, Xr
dFi, = C(I11) <_2> [dlszhXﬁ dF{, = H <( 2d1;) (; 1 12))
2 T12 41T >

r .
Here % represents unit vector along r,,
12



Ampere’s Law of Force Between Current Elements

Force exerted by dl, upon dl; is

Ldl)X(,dL, Xr
dF21='u<(1 X U,dl, 21))

3
41 51

The above two equations are known as Ampere’s law of force between
two current elements. It resembles Coulomb’s law

This equations appear to contradict Newton’s Il law, as 1,dl, and I,dl, are
not symmetric, dF,,; # dF,,

To overcome the contradiction, consider closed loops C; and C, instead
of current element. Force exerted by C, upon C, and C, upon C; is

2 (ldl)X (I dl XT135)
Fi; =— 3

41 Joq Jeo LY,

3

F :if f (1 dl)X(Idl;XT5,)
4 c1 Jc2 21




Ampere’s Law of Force Between Current Loops

Using vector triple product identity, aX(bXc) = (a.c)b— (a.b)c

11
Fi; = _jg j[) =2 [(dl;.113)dl; — (dl,.dly)T4,]
c1 /¢

212

I dl,.r,,)dl —ul;l

#412% (dl;.715) 1_ H12% dl1f ‘72( >d12
T Jec1 Je2 r12 c1 C2

() =3 ) 0 oy )+ 2 (= 7 (55
— | =—\|—|dx — | — —|—)dz, = —

’ T2 dx, \112 ’ 0y, \112 V2 0z, \T12 ’ ’ 12 ’

I;1 dl,.r.,)dl —ulql
Mlz% (dly.115) 1_ H12% dlljg d2< )-O
4 Jey Jeo 7’12 c1 C2 12

B —.U11123g (dl,.dl)ry, B ﬁ‘”ﬂzf (dl,.dl)r;,
12 = 21 =
am Jer Jez oy am Jey Jez 31
T, =Ty F,, = —F,, Thus Ampere’s law for current loop is

considered instead of current elements



Ampere’s Law in Circuital Form

Consider a long wire carrying current |, produces a magnetic field
induction B. The magnetic induction at any point P on the circular path
of radiusr is

ul
B =—
27T

At every point B is same and is parallel to
the tangent of circular path. The line integral
of the magnetic induction around the
circular path is

[ rdo I I
jﬂB.dl I Nl jéﬂ—de =B o
2T 1T

ng.dl=,uI

The sign of the integral depends on the direction of circle encircled. The
sign is positive, if path of line integral is parallel to B and is negative, if
path of line integral is anti-parallel to B



Ampere’s Law in Circuital Form

If the path enclosing current is not circular but irregular, then it can be
divided into small elements of length dl, then for a small element,

ol RdO gl A
B.dl = =
al 2t R 2T a0

The line integral of the magnetic induction
along the whole path is

j)‘B.dl fd@——Zn—uOI

This shows that Ampere’s law holds good for closed path of any shape.

When the closed path does not enclose current,
consider a current | and neighbouring closed
path which does not enclose any current. The
path is divided into large number of small
elements. Draw two lines OA, OB making an
angle dO cutting the arcs ab and cd of the path.




Ampere’s Law in Circuital Form

The line integral of the magnetic induction
along the path abcd is

f B.dl = %B.dl+ fB.dl+ fB.dl+ SLB.dl

abcd ab bc cd da

The angle between dl and B is 90°. So

fB.dl= ng.dl=O

bc da

f B.dl = f Bdl‘I‘ f B.dl == f Bl.d11COS(91 —+ f Bz.dlz COSQZ
abcd ab cd ab cd

N Hol ol
f B.dl = % - dl, f - dl,
abcd ab cd




Ampere’s Law in Circuital Form

Ilab cd
j@B.dl=“° [a _— ]
2w |1y 1

abcd

ab cd
But,—=—=d0
4] )

fB.dle

Thus Ampere’s law in circuital form is summarized as the line integral of
the magnetic induction around any closed path is equal to (i)

permeability multiplied by the current enclosed by the path and (ii) zero,
if the path does not enclose any current.

B dl — Uol,if path encloses current |
"7 |0,if path doesnot enclose current



Divergence of Magnetic Induction

Biot-Savart’s law states that the line representing the direction of field
dB are circles about the axis of current element and thus form closed
curves. These lines do not start at(diverge from) any point nor do they
stop (converge toward) any point. Thus the fixed dB i3 source free or

solenoidal, that is divergence is zero.
4
|

ldlXr
aB =+

4 13
u (ldlXr <>
B =
47Tj£ r3

Since differentiation and integration are interchangeable,

I dl X r
vg= V( )

41 "\ 73



Divergence of Magnetic Induction
Using the vector identity, V.(aXb)=b.VXa—-aVXbh

V.(le )—— VXdl—dl \7X—

r3 r3’
ul

V.B=— (— VXdl—dlLV X )
41 r3

Since dl is not a function of co-ordinate (x,y,z) of field point,

vXdl=0

Here the curl of electric field due to a point charge,
1 r 1 r
VXE=VX v _ VX(q—>=O
41rey 13 A1e, r3

V.B=0

Thus the divergence of magnetic induction is always zero.



Curl of Magnetic Induction

From Ampere’s law in circuital form,
fB. dl = u(sum of currents enclosed by path) = ul

If J is current density, then the total current | through S is

1= [[1.da b= [[1.da

From Stoke’s theorem,

§5.01= [[7xB.da
([rxB.da=u[[raa  Jj@xB-wda=o

Since surface S arbitrary, VXB—-—w =0 VXB =y

In free space, VXB = u,J

For steady flow of charge with charge density p having velocity v is
VXB = upv



Magnetic Vector Potential

In electrostatics, V X E = 0 permitted to introduce a scalar potential,
E=-VV
In magnetostatics, /. B = 0 permitted to introduce a vector potential,
B=VXA

If line integrals encircling any currents are considered, magnetic scalar
potential cannot be used and hence B can not be derived from scalar
magnetic potential. By Biot-Savart law, the magnetic induction due to a

current element is

1 } V(l)_—(xi+yj+zfc)_—r
r

r3 r3
I N\ —ul[ /1
aB=""arxl-v(2)| =2\ (=) x @i
41 T 41 T




Magnetic Vector Potential

Using vector identity,

VX(PA) =VOXA+@VXA VOXA=VX(0QA)—-0VXA
() xa=rx((F)a) (3
vl=)xdl=vx||=|dl|-=])V xdl
r r r
w7 (5) - () rxe
dB="—|VX|[— |- (=|V Xxdl
41t T T
As dl is not a function of co-ordinate (x,y,z), VXdl=0

= <dl>]
dB=—|VX|—
41 T
Total magnetic induction at any given point by a closed current loop is

o= ()



Magnetic Vector Potential

B_vy _jédl]

The quantity within the square bracket is a vector. By taking its curl, the
magnetic induction produced at any point by a closed loop carrying

current, the vector is obtained. This vector is known as magnetic vector
potential (A).
B=curlA=VXA

dl
47‘[

Using current density J dv = I dl, the magnetic vector potential is
_ K yg](r) dv

If the current element is at r’ instead of origin, then
J@') dv’

41 r—1r!

A=




Characteristics of Magnetic Vector Potential

(i) It satisfies Poissson’s equation
VXB =y,
B=VXA
VX (VXA =p,
V(V.A) — V2?4 = puyJ

Since V.A = 0,V?A = —pu,J

(ii) Scalar magnetic potential is

0, = fA. dl

By definition,
G, = j@B.dS

D, =-<£(\7XA).dS

Using Stoke’s theorem, ¢, = fA. dl



Electrostatics Boundary Conditions




Magnetostatics Boundary Conditions




Magnetic Field of a Distant Current Loop

Consider a current loop carrying current I. Let l.dr’ be the current
element having position vector r’ with respect to origin. Then the vector
potential at a distance P having position vector r (r>>r’)

B Ho | d‘l" 1+ dr’ P

A | |r —r'|

lr—7'| = 2 4+ 1'% = 2rr' cos )2 = (r2 + r'? = 2r.1")1/? ‘
C’
r'z  2r.r I

N 1/2
lr—r'|=r <1+r2 -3 >

I dr’
4= Ho %
4mr r'2 2 p

Applying Binomial expression and keeping only first order terms,

1/2

I r.r
A=E"bar (14 4.
Amtr r2




Magnetic Field of a Distant Current Loop

A= o+ f (55 Jar

For an arbitrary closed loop C/, jédr' =0

A= [f () v -

Using vector triple product, rX (dr' Xr') = (r.r)dr' — (r.dr')r’

Differentiating, dlr'(r.r)] =dr'(r.v") + r'(r.dr")

Adding above two equations, r X (ar' Xr') + d[r'(r.7)] = 2(r.7")ar’

(r.r)dr’ —%rX(dr Xr') +1 dlr'(r.r")]

—HOI b{) rX(err)+j€1 d[r (rr)]]

4113



Magnetic Field of a Distant Current Loop

Since the integrand in the second integral is perfect differential, its

integral around a closed loop is zero.

_ Ml H rX(dr' Xr')

4773

R , Ny T
_4n[2er(Idr)X r3]

Introducing a new quantity known as magnetic moment m,

m= %jg[r’X (Idr')]

A=

,LtO mX‘r'
4| 713

Thus the magnetic induction is,

B = curl Ar) = v x |0 [BAT
=curl A(r) = o




Magnetic Field of a Distant Current Loop

B= -z m7. ()]
=4 |TMm V)5 +mV. (3
r d (T m,i T
7(55) =0 Mg (55) = 5 — 3
r m 3(m.r)r
mv'<r_3>:r_3_ S

o [3(m.r)r m
o r3

B(r) = 4

This equation indicates that the magnetic field of a distant current
circuit does not depend upon its detailed geometry, but only on the
magnetic moment of the circuit, m.

The field is same as the electric field of dipole and hence the field is
called as magnetic dipole field.

E(r) = 1 K 3(P.r)r)_ P

ATTE r> r3
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