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Origin of Electrodynamics

Steady state problem deals electric
and magnetic fields independent of
each other.

Electro
statics

Magneto
statics

Charges 
at Rest

Charges in 
Steady Motion

Time varying magnetic field gives rise to electric
field is electromagnetic induction, which is treated
as gateway of electromagnetism.

Coupling the time independent behaviour of electric and magnetic field
in time-dependent environment is electrodynamics, which deals with
unsteady flow of current or varying magnetic field. Its equation of
continuity is given as,

Electro
magnetism

Charges in 
Unsteady Motion

𝛻. 𝑱 +
𝜕𝜌

𝜕𝑡
= 0



Electrodynamics Before Maxwell

𝛻. 𝑬 =
1

𝜀0
𝜌

𝛻. 𝑩 = 0

𝛻 𝑋 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 𝑋 𝑩 = 𝜇0𝑱

Divergence and curl of electric and magnetic fields are

Electrostatics (Gauss’s law)

Magnetostatics (no name)

Electromagnetism (Faraday’s law)

Magnetostatics (Ampere’s law)

Before Maxwell, when electrodynamics was proposed from the
existence of electromagnetic induction, the laws governing
electrostatics and magnetostatics were coupled. Here the curl of electric
field which is zero in electrostatics is replaced by faraday’s law. But the
organized equations showed inconsistency and Maxwell attempted to
fix it.



Maxwell Postulate
It is well-known that the divergence of curl is always is zero. To check
the validity, take divergence of Faraday’s and Ampere’s law,

The above contradiction does not come to play in magnetostatics as
divergence of current density is zero. Thus for steady current,
divergence of curl of magnetic filed is always zero. But in
electrodynamics, Ampere’s law looks incomplete.

𝛻. 𝛻 𝑋 𝑬 = 𝛻. −
𝜕𝑩

𝜕𝑡
= −

𝜕

𝜕𝑡
𝛻. 𝑩 = 0

𝛻. 𝛻 𝑋 𝑩 = 𝜇0 𝛻. 𝑱 ≠ 0

Ampere’s law is bound to fail for non-steady current and Maxwell
attempted to fix the problem of fitting Ampere’s law suitable for
electrodynamics through theoretical arguments. The modified law is
Maxwell-Ampere’s law and the term introduced is popularly called as
Maxwell displacement current.



Maxwell Postulate
To understand the failure of Ampere’s law for non-steady current,
consider the process of charging a capacitor. The integral form of
Ampere’s law states,

ර𝑩. 𝑑𝒍 = 𝜇0𝐼𝑒𝑛𝑐

Here Ienc is the total current
passing through the loop.
Here the surface lies in the
plane of the loop and the
wire punctures this surface.

Instead of a loop, if balloon shaped surface is placed. No current passes
through surface and Ienc=0.

Such cases does not prevail in magnetostatics and arises only in non-
steady current. This is a paradox and Maxwell proposed a postulate
called Maxwell current.



Maxwell Displacement Current
Consider the contradiction in divergence of curl of magnetic filed is
always zero, only if divergence of current density is zero. But From
equation of continuity,

𝛻. 𝛻 𝑋 𝑩 = 𝜇0 𝛻. 𝑱 ≠ 0

To validate, Ampere’s law for non-steady current, Maxwell attempted to
introduce a change in current density as,

𝛻. 𝑱 = −
𝜕𝜌

𝜕𝑡

𝛻. 𝛻 𝑋 𝑩 = 𝜇0𝛻. 𝑱 + 𝑱𝒅 = 0

𝛻. 𝑱 + 𝑱𝒅 = 0 𝛻. 𝑱 + 𝛻. 𝑱𝒅 = 0 𝛻. 𝑱 = − 𝛻. 𝑱𝒅

Using equation of continuity and gauss’s law,

𝛻. 𝑱𝒅 =
𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑡
𝜀0𝛻. 𝑬 = 𝛻. 𝜀0

𝜕𝑬

𝜕𝑡
𝑱𝒅 = 𝜀0

𝜕𝑬

𝜕𝑡



Maxwell Displacement Current

In Magnetostatics, E is constant and hence the second term contributes
nothing, taking to the simple Ampere’s law.

Therefore the modified Ampere’s law is

𝛻 𝑋 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0
𝜕𝑬

𝜕𝑡

The second term resolves the paradox of the charging capacitor. The
integral form of Ampere’s law states,

ර𝑩. 𝑑𝒍 = 𝜇0𝐼𝑒𝑛𝑐 + 𝜇0𝜀0න
𝜕𝑬

𝜕𝑡
. 𝑑𝒂

For flat surface, E=0 and Ienc = I. While for balloon surface, Ienc =0 and

׬
𝜕𝑬

𝜕𝑡
. 𝑑𝒂 = Τ𝑰 𝜀0 .

Maxwell called the extra term as displacement current and it produces
only a magnetic field. Its magnitude is equal to rate of change of
displacement current. Displacement current is negligible compared to
genuine conduction current in conductors.



Maxwell Equations

𝛻. 𝑬 =
1

𝜀0
𝜌

𝛻. 𝑩 = 0

𝛻 𝑋 𝑬 = −
𝜕𝑩

𝜕𝑡

Maxwell’s equation gives the divergence and curl of electric and
magnetic fields.

(Gauss’s law)

(no name)

(Faraday’s law)

(Maxwell-Ampere’s law)𝛻 𝑋 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0
𝜕𝑬

𝜕𝑡

𝑭 = 𝑞 𝑬 + 𝒗 𝑋 𝑩

Together with Lorentz force and continuity equation summarize the
entire classical electrodynamics.

𝛻. 𝑱 +
𝜕𝜌

𝜕𝑡
= 0

Maxwell equation explains, how charges produce fields and Force law
tells, how fields affect charges.



Maxwell Current and Equations- Recap

𝛻. 𝑬 =
1

𝜀0
𝜌

𝛻. 𝑩 = 0

𝛻 𝑋 𝑬 = −
𝜕𝑩

𝜕𝑡

Maxwell’s equation gives the divergence and curl of electric and
magnetic fields.

(Gauss’s law)

(no name)

(Faraday’s law)

(Maxwell-Ampere’s law)𝛻 𝑋 𝑩 = 𝜇0𝑱 + 𝜇0𝜀0
𝜕𝑬

𝜕𝑡

𝑭 = 𝑞 𝑬 + 𝒗 𝑋 𝑩

𝛻. 𝑱 +
𝜕𝜌

𝜕𝑡
= 0

ර𝑩. 𝑑𝒍 = 𝜇0𝐼𝑒𝑛𝑐 + 𝜇0𝜀0න
𝜕𝑬

𝜕𝑡
. 𝑑𝒂

Maxwell current term resolves the
paradox of the Amperian loop
experiment.



ME-1: Differential Form of Gauss Law in Electrostatics

Consider a surface S bounding a volume V in a dielectric medium. Let ρ
and ρP be charge densities of free charge and polarization charge at a
point in small volume element dV, then Gauss’s law is

න𝑬. 𝑑𝑺 =
1

𝜀0
න 𝜌 + 𝜌𝑃 𝑑𝑉

But polarization density is,

Using Gauss Divergence theorem

𝜌𝑃 = −𝛻.𝑷

න𝛻. 𝜀0𝑬 𝑑𝑉 = න𝜌𝑑𝑉 − න𝛻.𝑷𝑑𝑉

න𝛻. 𝜀0𝑬 + 𝑷 𝑑𝑉 = න𝜌𝑑𝑉

න 𝜀0𝑬 . 𝑑𝑺 = න𝜌𝑑𝑉 −න𝛻.𝑷𝑑𝑉

𝜀0𝑬 + 𝑷 = 𝑫But electric displacement is,

න𝛻.𝑫 𝑑𝑉 = න𝜌𝑑𝑉 𝛻.𝑫 = 𝜌



ME-2: Differential Form of Gauss Law in Magnetostatics

Since isolated magnetic poles have no significance, their magnetic lines
of force are closed curves. Number of magnetic line of force entering
any arbitrary closed surface is equal to the lines of force leaving out. It
means magnetic flux over any closed surface is zero.

Using Gauss Divergence theorem

As surface bounding the volume is arbitrary, integrand vanishes

𝛻.𝑩 = 0

න𝑩. 𝑑𝑺 = 0

න𝛻.𝑩 𝑑𝑉 = 0



ME-3: Differential Form of Faraday’s Law of Electromagnetic Induction

According to Faraday’s law of induction,

Using Stokes theorem

𝑒 = −
𝑑∅

𝑑𝑡

But magnetic flux is, ∅ = න𝑩. 𝑑𝑺

𝑒 = −
𝑑

𝑑𝑡
න𝑩. 𝑑𝑺 = −න

𝜕𝑩

𝜕𝑡
. 𝑑𝑺

If E is electric field at a small element dl of loop,
work done in carrying a charge round the loop,

𝑒 = න𝑬. 𝑑𝒍

න𝑬. 𝑑𝒍 = −න
𝜕𝑩

𝜕𝑡
. 𝑑𝑺

න𝛻 𝑋 𝑬. 𝑑𝑺 = −න
𝜕𝑩

𝜕𝑡
. 𝑑𝑺 න 𝛻 𝑋 𝑬 +

𝜕𝑩

𝜕𝑡
. 𝑑𝑺 = 0

As surface is arbitrary, integrand vanishes

𝛻 𝑋 𝑬 = −
𝜕𝑩

𝜕𝑡



ME-4: Maxwell Modified Ampere’s Law

Ampere’s circuital law states,

This equation is valid only for steady current (magnetostatics). But for
time-varying fields, this equation is insufficient.

Applying Stoke’s theorem,

As surface is arbitrary, integrand vanishes

ර𝑯. 𝑑𝒍 = 𝐼

𝑆𝑖𝑛𝑐𝑒, 𝐼 = න𝑱. 𝑑𝑺 ර𝑯. 𝑑𝒍 = න𝑱. 𝑑𝑺

ර𝛻 𝑋 𝑯. 𝑑𝑺 = න𝑱. 𝑑𝑺

ර 𝛻 𝑋 𝑯 − 𝑱 . 𝑑𝑺 = 0

𝛻 𝑋 𝑯 = 𝑱

To make it consistent with equation of continuity, Maxwell investigated
mathematically and introduced an additional current element Jd.

𝛻 𝑋 𝑯 = 𝑱 + 𝑱𝒅



ME-4: Maxwell Modified Ampere’s Law

Maxwell called it as displacement current and it arises when electric
displacement vector changes with time (only for time-varying fields).

Taking the divergence and imposing divergence of curl of any vector is
zero.

Using equation of continuity and Gauss law,

𝛻. 𝛻 𝑋 𝑯 = 𝛻. 𝑱 + 𝑱𝒅

𝛻. 𝑱 + 𝑱𝒅 = 0

𝛻. 𝑱 + 𝛻. 𝑱𝒅 = 0

𝛻. 𝑱 = − 𝛻. 𝑱𝒅

𝛻. 𝑱𝒅 =
𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑡
𝛻.𝑫 = 𝛻.

𝜕𝑫

𝜕𝑡

𝑱𝒅 =
𝜕𝑫

𝜕𝑡

𝛻 𝑋 𝑯 = 𝑱 +
𝜕𝑫

𝜕𝑡



Maxwell’s Equation for Free Space

where 𝜀0 and 𝜇0is absolute permittivity and permeability of free space
respectively.

In free space, volume charge density and current density are zero, its
Maxwell’s equations are.

𝛻.𝑫 = 0

𝛻.𝑩 = 0

𝛻 𝑋 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 𝑋 𝑯 =
𝜕𝑫

𝜕𝑡

𝑫 = 𝜀0𝑬 𝑎𝑛𝑑 𝑩 = 𝜇0𝑯



Maxwell’s Equation in Linear Isotropic Medium

If 𝜀 and 𝜇 is absolute permittivity and permeability of medium
respectively,

𝑫 = 𝜀𝑬 𝑎𝑛𝑑 𝑩 = 𝜇𝑯

Its Maxwell’s equations are,

𝛻.𝑫 =
𝜌

𝜀

𝛻. 𝑩 = 0

𝛻 𝑋 𝑬 = −𝜇
𝜕𝑯

𝜕𝑡

𝛻 𝑋 𝑯 = 𝑱 + 𝜀
𝜕𝑬

𝜕𝑡



Maxwell’s Equation for Harmonically Varying Fields

If electromagnetic fields vary harmonically with time,

Its Maxwell’s equations are,

𝑫 = 𝑫0𝑒
𝑖𝜔𝑡 𝑎𝑛𝑑 𝑩 = 𝑩0𝑒

𝑖𝜔𝑡

𝜕𝑫

𝜕𝑡
= 𝑫0𝑖𝜔𝑒

𝑖𝜔𝑡 = 𝑖𝜔𝑫

𝜕𝑩

𝜕𝑡
= 𝑩0𝑖𝜔𝑒

𝑖𝜔𝑡 = 𝑖𝜔𝑩

𝛻.𝑫 = 𝜌

𝛻.𝑩 = 0

𝛻 𝑋 𝑬 + 𝑖𝜔𝑩 = 0

𝛻 𝑋 𝑯 − 𝑖𝜔𝑫 = 𝑱



Vector and Scalar Potentials
Maxwell equations consist of a set of coupled first-order partial
differential equations relating components of fields. For convenience it
is necessary to introduce potentials, obtaining a smaller number of
second-order equations.

Since 𝜵.𝑩 = 0 still holds, 𝑩 = 𝛻 𝑋 𝑨

The other homogenous equation, Faraday’s law is

𝛻 𝑋 𝑬 +
𝜕𝑨

𝜕𝑡
= 0

This vanishing curl can be written as the gradient of some scalar
potential Φ

𝑬 +
𝜕𝑨

𝜕𝑡
= −𝛻∅

𝑬 = −𝛻∅ −
𝜕𝑨

𝜕𝑡



Vector and Scalar Potentials
Then the inhomogeneous equations can be written in terms of
potentials as

This will uncouple and leave two inhomogeneous equations as

𝛻2𝐀 −
1

𝑐2
𝜕2𝑨

𝜕𝑡2
− 𝛻 𝛻. 𝑨 +

1

𝑐2
𝜕∅

𝜕𝑡
= −𝜇0𝑱

𝛻2∅ +
𝜕

𝜕𝑡
𝛻. 𝑨 =

−𝜌

𝜀0

𝑨 → 𝑨′ = 𝑨 + 𝛻𝜦 ∅ → ∅′ = ∅ −
𝜕𝜦

𝜕𝑡

𝛻. 𝑨 +
1

𝑐2
𝜕∅

𝜕𝑡
= 0

Now we have set of four Maxwell equation into two coupled equations.
Uncoupling can be done through transformation as

𝛻2∅ −
1

𝑐2
𝜕2∅

𝜕𝑡2
=
−𝜌

𝜀0

𝛻2𝐀 −
1

𝑐2
𝜕2𝑨

𝜕𝑡2
= −𝜇0𝑱
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