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1. Dynamical Systems: Linear stability analysis

1.1 Introduction

The change in the state of physical systems as a function of time is referred to as their evolution,
the study of which constitutes the field of dynamics. These changes occur due to the interplay of
forces, both simple and complex, acting on the systems.

Dynamical systems are entities (e.g., particles, ensembles of particles, etc.) whose states vary
over time. Examples include:

• Physical systems (e.g., linear harmonic oscillator, simple pendulum, Kepler problem, atoms,
molecules, etc.)

• Chemical reactions
• Biological systems
• Populations of competing species and ecological systems
• Societal structures and financial markets
• Climate systems

The evolution of different physical systems depends on the nature of the forces acting upon
them and their initial states.

Newton’s laws form the foundation for describing the evolution of physical systems. Based
on these laws, suitable mathematical formulations can be developed in the form of differential
equations, either ordinary or partial, or difference equations.

When the forces acting on a system are linear, the system can be described, according to
Newton’s laws, using linear ordinary differential equations. However, when the forces are nonlinear,
they give rise to nonlinear dynamical systems. One can also determine whether the differential
equation is linear or nonlinear by examining the total degree of the dependent variables. A
differential equation is linear if each term has a total degree of either 0 or 1 in the dependent
variable and its derivatives. Even if one term has a degree different from 0 or 1, the equation is
nonlinear.
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Figure 1.1: Illustration of single particle in Cartesian coordinate system.

1.1.1 Newton’s Second Law
An object (or) a particle responds to an external force through a change in its momentum, p⃗, at

a temporal rate
d p⃗
dt

, which is exactly equal to the external force, F⃗ . The linear momentum p⃗ is
defined as the product of the object’s mass with its velocity, that is,

p⃗ = m⃗v. (1.1)

The mechanics of the object are encapsulated in this law. It states that there exist frames of
reference in which the motion of the object is governed by the following differential equation:

F⃗ =
d p⃗
dt

≡ ˙⃗p. (1.2)

A frame of reference in which the above equation holds is called an inertial frame or a Galilean
frame.

1.1.2 Linear Harmonic Oscillator
Consider a one-dimensional linear harmonic oscillator, where the restoring force is given by
F =−kx, with k > 0 being a constant.

Figure 1.2: Illustration of a spring-mass system (linear harmonic oscillator).

The equation of motion, according to Newton’s second law, can be expressed as:

d p
dt

≡ m
d2x
dt2 =−kx, (1.3)
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Figure 1.3: Illustration of a system of particles in Cartesian coordinate system.

where m is the mass. The above equation can also be rewritten as:

ẍ+ω
2
0 x = 0, (1.4)

where ω0 =
√

k/m is the natural frequency. In this expression, the double dot denotes the second
derivative with respect to time.

1.1.3 Phase Space
For a system of N particles with masses mi and position vectors r⃗i, i = 1,2, . . . ,N, the dynamics
(i.e., the time evolution) are represented by

mi ¨⃗ri = F⃗i
(⃗
r1 ,⃗r2, . . . ,⃗rN , ˙⃗r1, ˙⃗r2, . . . , ˙⃗rN , t

)
, (4)

where F⃗i is the total force acting on the ith particle of the system. In general, F⃗i depends on the
coordinates, velocities, and time. There are 3N equations in total.

The space spanned by the coordinates and momenta (or by the state variables) is known as
phase space.

In the case of a one-dimensional linear harmonic oscillator the state variables are x and p = mẋ.
Equation (1.4) is indeed a second order linear homogeneous ordinary differential equation (ODE).

A general solution to the harmonic oscillator equation (1.4) can be written as

x(t) = Acosω0t +Bsinω0t, (1.5)

where A and B are arbitrary constants determined by the initial conditions at t = 0, namely x(0)
and ẋ(0).

Figures 1.4(a) and 1.4(b) show the plots of x(t) and p = mẋ(t) for the initial condition
{x(0), ẋ(0)} = {0,1.3}, with m = 1 and ω0 = 1. Note that, for the above choice of parame-
ters and initial conditions, the constants A and B are determined as A = 0 and B = 1.3. The phase
space is two-dimensional (phase plane) and is represented with x as the abscissa and momentum
p = mv as the ordinate, as illustrated in Figure 1.4(c). The solution curve for a given initial condi-
tion in the phase plane is called a phase trajectory. The phase trajectory for the initial condition
{x(0), ẋ(0)}= {0,1.3} is a closed curve, shown as the black circle in Figure 1.4(c). The magenta
circle corresponds to the initial condition (x(0), ẋ(0)) = (0,1.7).
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Figure 1.4: Plots (a) coordinate x and (b) momentum p with respect to time (time series), and (c)
the phase phase of one-dimensional linear harmonic oscillator (1.4) with m = 1, ω0 =

√
k/m = 1,

and with initial conditions (x(0), ẋ(0)) = (0,1.3) (black) and (0,1.7) (magenta)

1.1.4 The Simple Pendulum
Consider a pendulum placed in an air medium (see Figure below). The restoring force is proportional

Figure 1.5: Illustration of a Simple Pendulum

to sinθ , which is nonlinear in θ . The equation of motion is given by

θ̈ +αθ̇ +
g
l

sinθ = 0, (1.6)

where α is the damping coefficient. For small displacements, sinθ ≈ θ , and the pendulum
behaves as a linear system. Under this approximation, the equation of motion simplifies to a linear
differential equation:

θ̈ +αθ̇ +
g
l

θ = 0. (1.7)

When the pendulum bob is disturbed from its equilibrium position, the amplitude of oscillation
decreases over time due to damping, eventually bringing the system to rest.
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Figure 1.6: Phase portraits (phase trajectories in phase space) of a pendulum with α = 0, g = 9.8
ms−2 and l = 0.5 m.
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Figure 1.7: Time series plots showing (a) θ and (b) θ̇ for an undamped pendulum (α = 0). The
parameters are g = 9.8m/s2 and l = 0.5 m, with initial conditions θ , θ̇ = (−20.0,0) (black) and
(−135,0) (green). Note that the frequencies (or periods) of oscillation differ for the two initial
conditions, illustrating the amplitude-dependent frequency characteristic of nonlinear systems.
Additionally, for small θ , the waveform is nearly sinusoidal, while at larger amplitudes, it deviates
significantly from standard sin or cos profiles.

1.2 Linear Stability Analysis
The dynamics of a particle in one dimension subjected to an external force can be represented by
the following set of ordinary differential equations:

ẋ1 = f1(x1,x2), (1.8a)

ẋ2 = f2(x1,x2), (1.8b)
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where (x1,x2) ∈ R2, f1 : R2 → R, and f2 : R2 → R.
In the case of a simple pendulum (1.7), the above equations can be written as

θ̇ = ω ≡ f1(θ ,ω), (1.9a)

ω̇ =−αω − g
l

sinθ ≡ f2(θ ,ω), (1.9b)

where x1 = θ and x2 = ω .

1.2.1 Equilibrium Point
One can often identify a time-independent solution (steady state) to equations (1.9a) and (1.9b),
such as (x∗1,x

∗
2), where f1(x∗1,x

∗
2) = 0 and f2(x∗1,x

∗
2) = 0. Such a solution is referred to as an

equilibrium point or a fixed point. It is sometimes also called a singular point.
To determine the stability of the equilibrium point, we introduce an infinitesimal perturbation

near the equilibrium point. For instance,

x1 = x∗1 + εx′1, (1.10a)

x2 = x∗2 + εx′2, (1.10b)

where ε ≪ 1.
To analyze the resulting dynamics, we perform a Taylor expansion about the equilibrium point:

f1(x1,x2) = f1(x∗1 + εx′1,x
∗
2 + εx′2)

= f1(x∗1,x
∗
2)+ ε

∂ f1

∂x1

∣∣∣∣
x∗1,x

∗
2

x′1 + ε
∂ f1

∂x2

∣∣∣∣
x∗1,x

∗
2

x′2 +O(ε2). (1.11)

Here,
∂ f1

∂x1

∣∣∣∣
x∗1,x

∗
2

and
∂ f1

∂x2

∣∣∣∣
x∗1,x

∗
2

denote the partial derivatives evaluated at the equilibrium point

(x∗1,x
∗
2). Similarly, we can expand f2(x1,x2) as

f2(x1,x2) = f2(x∗1 + εx′1,x
∗
2 + εx′2)

= f2(x∗1,x
∗
2)+ ε

∂ f2

∂x1

∣∣∣∣
x∗1,x

∗
2

x′1 + ε
∂ f2

∂x2

∣∣∣∣
x∗1,x

∗
2

x′2 +O(ε2), (1.12)

Because f1(x∗1,x
∗
2) = f2(x∗1,x

∗
2) = 0, and the higher-order terms O(ε2) on the right-hand sides can

be neglected in most cases, equations (1.9a) and (1.9b) can be approximated as a system of two
coupled first-order linear differential equations:

ẋ′1 = ax′1 +bx′2, (1.13a)

ẋ′2 = cx′1 +dx′2, (1.13b)

where

a =
∂ f1

∂x1

∣∣∣∣
(x∗1,x

∗
2)

, b =
∂ f1

∂x2

∣∣∣∣
(x∗1,x

∗
2)

, c =
∂ f2

∂x1

∣∣∣∣
(x∗1,x

∗
2)

, and d =
∂ f2

∂x2

∣∣∣∣
(x∗1,x

∗
2)

(1.14)

The above equations (1.13) can be equivalently expressed in matrix form as:(
ẋ′1
ẋ′2

)
=

(
a b
c d

)(
x′1
x′2

)
≡ M

(
x′1
x′2

)
, (1.15)
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where M =

(
a b
c d

)
is called the Jacobian matrix.

Differentiating (1.13a) with respect to t and eliminating x′2 from it, we obtain a second-order
differential equation in x′1:

ẍ′1 − (a+d)ẋ′1 +(ad −bc)x′1 = 0. (1.16)

A formal solution to the above can be expressed as

x′1(t) = Aexp(λ1t)+Bexp(λ2t), (1.17)

where A and B are integration constants, and

λ1,2 =
1
2

[
(a+d)±

√
(a+d)2 −4(ad −bc)

]
, (1.18)

are the eigenvalues of the linear system (1.13a) and (1.13b) or that of the Jacobian matrix M. Note
that the eigenvalues λ1 and λ2 may, in general, be complex.

Substituting (1.17) into (1.13a), we obtain

x′2 =C exp(λ1t)+Dexp(λ2t), where C =
A(λ1 −a)

b
, and D =

B(λ2 −a)
b

. (1.19)

• Stable: Both eigenvalues have negative real parts.
• Unstable: At least one eigenvalue has a positive real part.
• Neutral: Both eigenvalues have zero real parts.

1.2.2 Classification of Equilibrium (Singular) Points
Based on the above criteria for determining the stability or instability of equilibrium points, the
following broad classification can be made, depending on the nature of the eigenvalues.

Case 1: λ1 ≤ λ2 < 0 – stable node/star
When both eigenvalues are real and negative (less than zero), it follows that x′1(t)→ 0 and x′2(t)→ 0
as t → ∞. Consequently, any trajectory starting in the neighborhood of the equilibrium point (x∗1,x

∗
2)

in the (x1,x2) phase plane approaches this point exponentially in the long time (asymptotic) limit .
To analyze how the trajectories approach the equilibrium point in the (x1,x2) phase plane, we

examine the slope
dx2

dx1
of the trajectories.

Shifting the origin to the equilibrium point (x∗1,x
∗
2) for convenience (which involves replacing

x1 → x1 − x∗1 and x2 → x2 − x∗2 in (1.10), and then rewriting the equations for the new variables
(x1,x2)), we obtain the following from (1.19) and (1.17):

dx2

dx1
=

Cλ1e(λ1−λ2)t +Dλ2

Aλ1e(λ1−λ2)t +Bλ2
(1.20)

Here we can distinguish two cases: (i) λ1 = λ2 = λ and (ii) λ1 ̸= λ2.
(i) When λ1 = λ2 we have

dx2

dx1
=

(C+D)λ

(A+B)λ
= constant = m. (1.21)

Integrating the above yields

x2 = mx1 + c0 (1.22)
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where c0 is a constant. Using the fact that the origin is a fixed point–since we have shifted the
fixed point to the origin through the transformations x1 → x1 − x∗1 and x2 → x2 − x∗2–we may
choose c0 = 0. Consequently, equation (1.22) represents a straight line passing through the origin
(the fixed point). Therefore, in the x1 − x2 phase space, trajectories approach the equilibrium
point along straight-line paths, as illustrated in Figure 1.8(a). An equilibrium point of this type is
called a stable star (due to its starlike structure).

(ii) For λ1 < λ2, the slope of the trajectories varies with time and decreases exponentially to the
value D/B, since λ1 < λ2. It can be shown that the trajectories in the (x1,x2)-plane approach the
equilibrium point along parabolic paths. Figure 1.8(b) illustrates the phase trajectories in the
neighborhood of the equilibrium point after a suitable rotation of the coordinate axes. This type
of equilibrium point is called a stable node.

x1

x2
(a)

x1

x2
(b)

x1

x2
(c)

x1

x2
(d)

Figure 1.8: Classification of equilibrium points: Phase trajectories near the equilibrium points: (a)
stable star, (b) stable node, (c) unstable star, and (d) unstable node. In all the plots, the equilibrium
point is located at the origin.

Case 2: λ1 ≥ λ2 > 0 – unstable node/star
Next, when λ1 and λ2 are real and positive, x1(t)→ 0 as t → ∞. Therefore, the trajectories starting
from a neighbourhood of the equilibrium point diverge from it, and the equilibrium point is unstable.
For λ1 = λ2 = λ , the slope dy/dx is given again by (1.21), and the trajectories now diverge along
straight lines. The equilibrium point is referred to as an unstable star. When λ1 ̸= λ2, it is classified
as an unstable node. The corresponding phase trajectories are illustrated in Figures 1.8(c) and
1.8(d).

Case 3: λ1, λ2 complex conjugates - stable/unstable focus
Let λ1 and λ2 be complex conjugates given by

λ1 = α + iβ , λ2 = α − iβ , (1.23)

where α and β are real constants with β > 0. Now the solution for this case becomes

x1(t) = |A|eαt cos(β t +φ), (1.24a)

x2(t) = |D|eαt sin(β t +φ
′), (1.24b)

where A = AR+ iAI , D =DR+ iDI , φ = arctan
(

AI

AR

)
, and φ ′ = arctan

(
DI

DR

)
. In the above A = B∗

is an integration constant while D =C∗ given by Eq. (1.19).
For α < 0, both x1 → 0 and x2 → 0 as t → ∞. Hence, the equilibrium point is stable. Figure

1.9(a) illustrates the trajectories near the equilibrium point. These trajectories spiral around
the equilibrium point several times before converging to it asymptotically. In this scenario, the
equilibrium point is referred to as a stable spiral point or stable focus. Conversely, when α > 0,
the trajectories diverge from the equilibrium point along spiral paths [see Figure 1.9(b)]. In this
case, the equilibrium point is classified as an unstable focus.
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Figure 1.9: Classification of equilibrium points: Phase trajectories near the equilibrium points:
(a) stable focus, (b) unstable focus, (c) center, and (d) saddle (hyperbolic). In all the plots, the
equilibrium point is located at the origin.

Case 4: λ1, λ2 pure imaginary (complex conjugates) - center/elliptic
In this case the solution becomes

x1(t) = |A|cos(β t +φ), (1.25a)

x2(t) = |D|sin(β t +φ
′), (1.25b)

The perturbation neither decays to zero nor diverges to infinity; instead, it varies periodically with
time. In this case, the trajectories form closed orbits around the equilibrium point, as shown in
Figure 1.9(c). The trajectories do not approach the equilibrium point as t → ∞. This type of
equilibrium point is called a center type or elliptic equilibrium point and is neutrally stable, i.e.,
neither stable nor unstable.

Case 5: λ1 < 0 < λ2 saddle or hyperbolic
For λ1 < 0 and λ2 > 0 (or vice versa), the first terms in equations (1.17) and (1.19) approach zero
as t → ∞, while the second terms diverge to infinity as t → ∞. When both terms are considered, we
have |x1|, |x2| → ∞ as t → ∞, and the solution curves are hyperbolic.

However, for certain initial conditions, specifically when B = D = 0, we have |x1|, |x2| → 0
as t → ∞, and hence the trajectories approach the equilibrium point. Figure 1.9(d) illustrates the
trajectories in the vicinity of the equilibrium point.

In Figure 1.9(d), we observe that trajectories reach the equilibrium point along two specific
directions only, while in all other directions, the trajectories diverge from it. Therefore, we
can conclude that, in general, the trajectories diverge from the equilibrium point. This type of
equilibrium point is called a saddle point, which is inherently unstable. It is also called a hyperbolic
equilibrium point.

1.2.3 The Pendulum Example
Let us again consider the pendulum case (1.6). The equilibrium points are obtained by solving

θ̇ = ω = 0, (1.26)

ω̇ =−αω − g
l

sinθ = 0, (1.27)

which gives the equilibrium points as

(θ ∗,ω∗) = (nπ,0), n = 0,±1,±2, . . . (1.28)

The stability of (θ ∗,ω∗) is determined by linearizing (1.7) in the neighborhood of the equilibrium
points. For this purpose, we assume the solutions in the form θ(t) = θ ∗ + εθ ′(t) and ω(t) =
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ω∗+ εω ′(t). The linear system is then given by

θ̇
′ = aθ

′+bω
′, (1.29a)

ω̇
′ = cθ

′+dω
′, (1.29b)

where a = 0, b = 1, c =−g
l cosθ ∗, and d =−α . Or in matrix form

(
θ̇ ′

ω̇ ′

)
=

(
0 1

−g
l

cosθ
∗ −α

)(
θ ′

ω ′

)
=

(
0 1

−g
l
(−1)n −α

)(
θ ′

ω ′

)
≡ M

(
θ ′

ω ′

)
, (1.30)

where θ ∗ = nπ , n = 0,±1,±2, . . . is used.
The eigenvalues of M that determine the stability are obtained by solving

λ
2 +αλ +

g
l
(−1)n = 0, (22)

and are given by

λ1,2 =
1
2

[
−α ±

√
α2 − 4g

l
(−1)n

]
. (23)

• If we consider the equilibrium point (θ ∗,ω∗) = (0,0), and assume α = 0 (no damping) and
g/l = 1, the eigenvalues are λ1,2 = ±i, where i =

√
−1. Thus, the equilibrium point (0,0) is

classified as a center (or neutral point).

Figure 1.10: Phase portraits (phase trajectories in phase space) of a pendulum illustrating the
stability of the equilibrium points, with α = 1.0s−1, g = 9.8m/s2, and l = 0.5m. The values in
parentheses are the starting values (initial conditions) of (θ , θ̇) for the corresponding trajectory.

• With α = 0 and g/l = 1, the other equilibrium point (θ ∗,ω∗) = (0,π) for n = 1 has eigenvalues
λ1,2 =±1. Since one of the eigenvalues has a positive real part, the equilibrium point is unstable.
However, because the other eigenvalue is negative, the equilibrium point (0,π) is also classified
as a saddle point.

Let us now attempt to draw the phase trajectories of the pendulum by considering damping (α ̸= 0).
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Figure 1.11: Time series plots illustrating damped oscillations of (a) θ and (b) θ̇ in a pendulum with
α = 1.0 s−1, g = 9.8 m/s2, and l = 0.5 m for two different initial conditions: (265,−6.75) (green
line) and (223,−11) (black line). These conditions asymptotically approach the stable equilibrium
points (θ ∗, θ̇ ∗) = (0,0) and (2π,0) = (360◦,0), respectively.

1.2.4 An Anharmonic Oscillator
Consider a particle of mass m is subjected to a nonlinear spring force F =−kx+ β̃x3 (nonlinear
stiffness). According to Newton’s law, the equation of motion can be written as

mẍ =−kx+ β̃x3

The above second order ODE can be written as a set of two first order ODEs

ẋ = y,

ẏ =−ω
2
0 x+βx3, where ω

2
0 =

k
m
, and β =

β̃

m
.

The equilibrium points are obtained by setting ẋ = 0 and ẏ = 0, and are

(x∗,y∗) = (0,0),

√ω2
0

β
,0

 , and

−
√

ω2
0

β
,0

 .

To determine the stability, we need to linearize the above first order ODEs in the neighbourhood
of the equilibrium points. This is done by assuming x = x∗+ εx′ and y = y∗+ εy′ (ε ≪ 1). Taylor
expanding and dropping higher order terms in ε results, we get

ẋ′ = y′,

ẏ′ =−ω
2
0 x′+3βx∗2x′.

Or in matrix form(
ẋ′

ẏ′

)
=

(
0 1

−ω2
0 +3βx∗2 0

)(
x′

y′

)
≡ M

(
x′

y′

)
.
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Figure 1.12: Phase portraits (phase trajectories in phase space) of a nonlinear spring illustrating the
stability of the equilibrium points for ω2

0 = 1 and β = 1 (k = 1, β̃ = 1, and m = 1 in the original
problem). The equilibrium points are (0,0) (a center or neutral), and (1,0), (−1,0) (both unstable -
saddle points). The black dashed lines represent unstable trajectories.

The stability determining eigenvalues are obtained by solving

|M−λ I|= 0 =⇒ λ
2 +ω

2
0 −3βx∗2 = 0.

This gives

λ1,2 =±
√

3βx∗2 −ω2
0 .

Thus, the equilibrium point (0,0) has a pair of purely imaginary eigenvalues, λ1,2 =±iω0, when
ω2

0 > 0. Therefore, it is classified as neutral (represented by solid lines in Figure 1.12 above).

In contrast, the other two equilibrium points,
(√

ω2
0

β
,0
)

and
(
−
√

ω2
0

β
,0
)

, have eigenvalues

λ1,2 =±
√

2ω0 and are unstable saddle points. Figure 1.12 illustrates the phase trajectories of the
nonlinear spring model, with the unstable trajectories indicated by dashed lines.

1.2.5 Damped Anharmonic Oscillator (Double Well Potential Case)
The equation of motion of the damped anharmonic oscillator (in dimensionless form) is given by

ẍ+α ẋ−ω
2
0 x+βx3 = 0,

where α , β and ω0 are positive constants. which can be written as a set of first order ODEs of the
form

ẋ = y,

ẏ = ω
2
0 x−αy−βx3,
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The equilibrium points are

(x∗,y∗) = (0,0),

+

√
ω2

0
β

,0

 , and,

−
√

ω2
0

β
,0

 ,

The stability of these equilibrium points are determined by the eigenvalues of the following matrix

M =

(
0 1

ω2
0 −3βx∗2 −α

)
,

which is given by

λ
2 +αλ −

(
ω

2
0 −3βx∗2

)
= 0.

The eigenvalues are

λ1,2 =
1
2

[
−α ±

√
α2 +4

(
ω2

0 −3βx∗2
)]

.

• The equilibrium point (0,0) has eigenvalues λ1,2 =
1
2

(
−α ±

√
α2 +4ω2

0

)
.

– Since
√

α2 +4ω2
0 is always greater than α , we have λ1 > 0 and λ2 < 0, and therefore the

equilibrium point (0,0) is unstable (saddle or hyperbolic fixed point).

• The other two equilibrium points

±
√

ω2
0

β
,0

 have eigenvalues λ1,2 =
1
2

[
−α ±

√
α2 −8ω2

0

]
.

– For α2 > 8ω2
0 both the eigenvalues are negative and the equilibrium points are stable (stable

node).

– For α2 < 8ω2
0 , λ1,2 =

1
2

[
−α ± i

√∣∣α2 −8ω2
0

∣∣]. The eigenvalues are complex conjugates with

negative real parts, and they are stable (stable focus).
– When α2 = 8ω2

0 , the eigenvalues are negative real and identical (stable star).
The phase trajectories in phase space are shown in Fig. 1.13. The Python code used to generate this
figure is provided below.

1.2.6 Python Code

1 # Python code used to generate Figure 1.13
2 from numpy import *
3 from scipy.integrate import odeint
4 from matplotlib import *
5 from matplotlib.pyplot import *
6 import matplotlib.gridspec as gspec
7

8 rc('text', usetex=True) # to use LaTeX for math symbols in plots
9 rc('font', family='serif', size='25') # to set font size

10

11 def cubic(u, t, b): # defines the system of odes
12 xdot = u[1]
13 ydot = (b[0] - b[2] * u[0] * u[0]) * u[0] - b[1] * u[1]
14 return (xdot, ydot)
15
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Figure 1.13: Phase trajectories in the phase space of an anharmonic oscillator illustrating the
stability of its equilibrium points. The parameters are ω2

0 = 1, α = 0.5, and β = 1. The equilibrium
point (0,0), denoted by a red circle, is unstable (a saddle point), while the other two equilibrium
points (±1,0), marked by green circles, are stable (stable focus).

16 b = [1., 0.5, 1.]
17

18 dt = 1.0 / 100
19 t = arange(0, 25.01, dt)
20 t1 = arange(0, 8.51, dt)
21 t2 = arange(0, 15.01, dt)
22 t3 = arange(0, 4.01, dt)
23

24 nm = 0
25

26 xx = array([-1, 0, 1])
27 yy = array([0, 0, 0])
28

29 u10 = [1.4, -1.06]
30 u1 = odeint(cubic, u10, t, (b,))
31

32 u20 = [-1.4, 1.06]
33 u2 = odeint(cubic, u20, t, (b,))
34

35 u30 = [1.45, -0.97]
36 u3 = odeint(cubic, u30, t, (b,))
37

38 u40 = [-1.45, 0.97]
39 u4 = odeint(cubic, u40, t, (b,))
40

41 u50 = [0., 1]
42 u5 = odeint(cubic, u50, t, (b,))
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43

44 u60 = [0., -1]
45 u6 = odeint(cubic, u60, t, (b,))
46

47 label =['(a)', '(b)', '(c)']
48 pos = [(-5, 10), (-5, 10), (15, -25)]
49

50 fig = figure(1, figsize=(10, 6))
51 fig.subplots_adjust(left=0.13, right=0.96, top=0.96, bottom=0.13)
52 gs = gspec.GridSpec(1,1)
53

54 sp1 = Subplot(fig, gs[0])
55 fig1 = fig.add_subplot(sp1)
56 plot(u1[nm:,0], u1[nm:,1], 'g-', lw=1.25)
57 plot(u2[nm:,0], u2[nm:,1], 'g-', lw=1.25)
58 plot(u3[nm:,0], u3[nm:,1], 'b-', lw=1.25)
59 plot(u4[nm:,0], u4[nm:,1], 'b-', lw=1.25)
60 plot(u5[nm:,0], u5[nm:,1], 'r-', lw=1.25)
61 plot(u6[nm:,0], u6[nm:,1], 'r-', lw=1.25)
62

63 n1, n2 = nm+240, nm+241
64 annotate(text='', xy=(u1[n1,0], u1[n1,1]), xytext=(u1[n2,0], u1[n2,1]),
65 arrowprops=dict(arrowstyle='<-', color='g'))
66 annotate(text='', xy=(u2[n1,0], u2[n1,1]), xytext=(u2[n2,0], u2[n2,1]),
67 arrowprops=dict(arrowstyle='<-', color='g'))
68

69 n1, n2 = nm+120, nm+121
70 annotate(text='', xy=(u3[n1,0], u3[n1,1]), xytext=(u3[n2,0], u3[n2,1]),
71 arrowprops=dict(arrowstyle='<-', color='b'))
72 annotate(text='', xy=(u4[n1,0], u4[n1,1]), xytext=(u4[n2,0], u4[n2,1]),
73 arrowprops=dict(arrowstyle='<-', color='b'))
74

75 n1, n2 = nm+800, nm+801
76 annotate(text='', xy=(u3[n1,0], u3[n1,1]), xytext=(u3[n2,0], u3[n2,1]),
77 arrowprops=dict(arrowstyle='<-', color='b'))
78 annotate(text='', xy=(u4[n1,0], u4[n1,1]), xytext=(u4[n2,0], u4[n2,1]),
79 arrowprops=dict(arrowstyle='<-', color='b'))
80

81 n1, n2 = nm+1060, nm+1061
82 annotate(text='', xy=(u3[n1,0], u3[n1,1]), xytext=(u3[n2,0], u3[n2,1]),
83 arrowprops=dict(arrowstyle='<-', color='b'))
84 n1, n2 = nm+1100, nm+1101
85 annotate(text='', xy=(u4[n1,0], u4[n1,1]), xytext=(u4[n2,0], u4[n2,1]),
86 arrowprops=dict(arrowstyle='<-', color='b'))
87

88 n1, n2 = nm+100, nm+101
89 annotate(text='', xy=(u5[n1,0], u5[n1,1]), xytext=(u5[n2,0], u5[n2,1]),
90 arrowprops=dict(arrowstyle='<-', color='r'))
91 annotate(text='', xy=(u6[n1,0], u6[n1,1]), xytext=(u6[n2,0], u6[n2,1]),
92 arrowprops=dict(arrowstyle='<-', color='r'))
93

94 n1, n2 = nm+300, nm+301
95 annotate(text='', xy=(u5[n1,0], u5[n1,1]), xytext=(u5[n2,0], u5[n2,1]),
96 arrowprops=dict(arrowstyle='<-', color='r'))
97 annotate(text='', xy=(u6[n1,0], u6[n1,1]), xytext=(u6[n2,0], u6[n2,1]),
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98 arrowprops=dict(arrowstyle='<-', color='r'))
99

100 plot(xx, yy, 'go')
101 plot(xx[1], yy[1], 'ro')
102

103 xlim(-1.5, 1.5)
104 ylim(-1.25, 1.25)
105 grid(True, which='both', linestyle=":")
106 xlabel("$x$")
107 ylabel("$\\dot x$")
108

109 sp1.annotate("unstable", xy=(0.0, 0.01), xycoords='data',
110 xytext=(-0.15, 0.8), textcoords='data', size=20, va="center", ha="center",
111 bbox=dict(boxstyle="round4", fc="w"), arrowprops=dict(arrowstyle="->"))
112

113 sp1.annotate("stable", xy=(-1.0, -0.01), xycoords='data',
114 xytext=(-0.8, 0.6), textcoords='data', size=20, va="center", ha="center",
115 bbox=dict(boxstyle="round4", fc="w"), arrowprops=dict(arrowstyle="->",
116 connectionstyle="arc3,rad=-0.2", fc="w"))
117

118 sp1.annotate("stable", xy=(1.0, -0.01), xycoords='data',
119 xytext=(0.8, -0.6), textcoords='data', size=20, va="center", ha="center",
120 bbox=dict(boxstyle="round4", fc="w"), arrowprops=dict(arrowstyle="->",
121 connectionstyle="arc3,rad=0.2", fc="w"))
122

123 show()

1.3 Problems

Exercise 1.1 The equation of motion for a damped anharmonic oscillator is given by:

ẍ+α ẋ−ω
2
0 x+βx3 = 0,

where ẍ represents the acceleration, ẋ is the velocity, α is the damping coefficient, ω0 is the
natural angular frequency, and β characterizes the anharmonicity of the oscillator. Determine the
equilibrium points of the system and analyze their stability.
Exercise 1.2 The Lotka-Volterra Predator-Prey Model is described by the following set of first-
order ordinary differential equations:

ẋ = x(α −βy),

ẏ = y(−γ +δx),

where x represents the prey population, y represents the predator population, and α,β ,γ,δ are
positive constants. Find the equilibrium points and perform linear stability analysis around each
equilibrium.
Exercise 1.3 The equation of motion for the Duffing Oscillator is:

ẍ+δ ẋ+αx+βx3 = 0,

where δ is the damping coefficient, and α,β characterize the stiffness and nonlinearity. Rewrite
the second-order ODE as a system of first-order equations, identify equilibrium points, and analyze
their stability.
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Exercise 1.4 The nonlinear system describing chemical reaction dynamics is given by:

ẋ = k1 − k2x+ k3x2y,

ẏ =−k3x2y+ k4y,

where x and y are the concentrations of two species, and k1,k2,k3,k4 are positive rate constants.
Identify the equilibrium points and classify their stability.
Exercise 1.5 The dynamics of a Van der Pol Oscillator are described by:

ẍ−µ(1− x2)ẋ+ x = 0,

where µ > 0 is a parameter. Convert the second-order equation into a first-order system, determine
the equilibrium points, and analyze their stability for different values of µ .
Exercise 1.6 The dynamics of the SIR Epidemic Model are governed by:

Ṡ =−βSI,

İ = βSI − γI,

Ṙ = γI,

where S, I,R represent the susceptible, infected, and recovered populations, respectively, and
β ,γ > 0 are rate parameters. Reduce the system to two equations (using S+ I +R = N), find the
equilibrium points, and perform linear stability analysis.
Exercise 1.7 The equation of motion for a pendulum with damping is:

θ̈ +αθ̇ +ω
2
0 sinθ = 0,

where θ is the angular displacement, α is the damping coefficient, and ω0 is the natural angular
frequency. Approximate sinθ ≈ θ for small perturbations, identify the equilibrium points, and
analyze stability for small θ .
Exercise 1.8 The dynamics of a nonlinear circuit (Chua’s circuit) are described by the following
set of equations in dimensionless variables:

ẋ = α(y− x− f (x)),

ẏ = x− y+ z,

ż =−βy,

where f (x) = m1x+ 0.5(m0 −m1)(|x+ 1| − |x− 1|), and α,β ,m0,m1 are parameters. Find the
equilibrium points and analyze their stability for specific parameter values.
Exercise 1.9 A two-species ecological model with logistic growth is given by:

ẋ = r1x
(

1− x
K1

−a12
y

K1

)
,

ẏ = r2y
(

1− y
K2

−a21
x

K2

)
,

where x and y represent the populations of two species, r1,r2 are intrinsic growth rates, K1,K2 are
carrying capacities, and a12,a21 are competition coefficients. Determine the equilibrium points and
investigate their stability.
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